Three-Dimensional Silicon-based MEA with High Spatial Resolution
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In neuroprosthetics, prostheses with higher and denser electrodes are needed to obtain both more precise recordings and targeted stimulations. The main limit is the routing of the active sites to the electronic control unit. A solution is to place electrod ...
Organic bioelectronics aims at the intimate integration between organic materials and biological tissues in order to obtain a targeted functional outcome. In the last decades, conductive polymers have been successfully employed to interface excitable cells ...
Cortical neurons, in their native state, are organized in six different cell layers; and the thickness of the cell layer ranges from 0.12 mm to 0.4 mm. The structure of cell layers plays an important role in neurodegenerative diseases or corticogenesis. We ...
A novel microfabrication technique for microelectrode arrays (MEAs) with a full diamond-cell interface is demonstrated. Boron-doped nano-crystalline diamond (BNCD) is used as a conductive electrode material on metal tracks insulated by intrinsic NCD. MEAs ...
Microelectrode arrays (MEAs) are designed to monitor and/or stimulate extracellularly neuronal activity. However, the biomechanical and structural mismatch between current MEAs and neural tissues remains a challenge for neural interfaces. This article desc ...
Described herein are microelectrode array devices, and methods of fabrication and use of the same, to provide highly localized and efficient electrical stimulation of a neurological target. The device includes multiple microelectrode elements arranged alon ...
Recently, CMOS-based microelectrode arrays containing a high-density of electrodes have emerged as a tool enabling recording the extracellular neural electrical activity of cell cultures at subcellular resolution. However, several improvements in areas suc ...
Described herein are microelectrode array devices, and methods of fabrication and use of the same, to provide highly localized and efficient electrical stimulation of a neurological target. The device includes multiple microelectrode elements arranged alon ...
Micro-electrode array (MEA) technology has been exploited as a powerful tool for providing distributed information on learning, memory and information processing in cultured neuronal tissue, enabling an experimental perspective from the single cell level u ...
Planar electrodes are increasingly used in therapeutic neural stimulation techniques such as functional electrical stimulation, epidural spinal cord stimulation and cortical stimulation. Recently, optimized electrode geometries have been shown to increase ...