Publication

Online interoperable resources for building hippocampal neuron models via the Hippocampus Hub

Résumé

To build biophysically detailed models of brain cells, circuits, and regions, a data-driven approach is increasingly being adopted. This helps to obtain a simulated activity that reproduces the experimentally recorded neural dynamics as faithfully as possible, and to turn the model into a useful framework for making predictions based on the principles governing the nature of neural cells. In such a context, the access to existing neural models and data outstandingly facilitates the work of computational neuroscientists and fosters its novelty, as the scientific community grows wider and neural models progressively increase in type, size, and number. Nonetheless, even when accessibility is guaranteed, data and models are rarely reused since it is difficult to retrieve, extract and/or understand relevant information and scientists are often required to download and modify individual files, perform neural data analysis, optimize model parameters, and run simulations, on their own and with their own resources. While focusing on the construction of biophysically and morphologically accurate models of hippocampal cells, we have created an online resource, the Build section of the Hippocampus Hub -a scientific portal for research on the hippocampus- that gathers data and models from different online open repositories and allows their collection as the first step of a single cell model building workflow. Interoperability of tools and data is the key feature of the work we are presenting. Through a simple click-and-collect procedure, like filling the shopping cart of an online store, researchers can intuitively select the files of interest (i.e., electrophysiological recordings, neural morphology, and model components), and get started with the construction of a data-driven hippocampal neuron model. Such a workflow importantly includes a model optimization process, which leverages high performance computing resources transparently granted to the users, and a framework for running simulations of the optimized model, both available through the EBRAINS Hodgkin-Huxley Neuron Builder online tool.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (33)
Réseau neuronal convolutif
En apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Réseau de neurones (biologie)
En neurosciences, un réseau de neurones correspond, schématiquement : Soit à un nombre restreint de différents neurones interconnectés, qui ont une fonction précise, comme le ganglion stomatogastrique qui contrôle l'activité des muscles de l'estomac des crustacés. Soit à un grand nombre de neurones similaires interconnectés, qui ont des fonctions plus cognitives, comme les réseaux corticaux qui permettent entre autres la catégorisation.
Simulation de phénomènes
La simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Afficher plus
Publications associées (72)

Task-driven neural network models predict neural dynamics of proprioception: Neural network model weights

Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi

Proprioception tells the brain the state of the body based on distributed sensors in the body. However, the principles that govern proprioceptive processing from those distributed sensors are poorly understood. Here, we employ a task-driven neural network ...
EPFL Infoscience2024

Small-scale robotic devices for medical interventions in the brain

Mahmut Selman Sakar, Lorenzo Francesco John Noseda

This article summarizes the recent advancements in the design, fabrication, and control of microrobotic devices for the diagnosis and treatment of brain disorders. With a focus on diverse actuation methods, we discuss how advancements in materials science ...
2024
Afficher plus
MOOCs associés (32)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.