Universal quantificationIn mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", or "for any". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.
Formule booléenne quantifiéeEn théorie de la complexité, en informatique théorique, en logique mathématique, une formule booléenne quantifiée (ou formule QBF pour quantified binary formula en anglais) est une formule de la logique propositionnelle où les variables propositionnelles sont quantifiées. Par exemple, est une formule booléenne quantifiée et se lit « pour toute valeur booléenne x, il existe une valeur booléenne y et une valeur booléenne z telles que ((x ou z) et y) ».
Constraint satisfactionIn artificial intelligence and operations research, constraint satisfaction is the process of finding a solution through a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a set of values for the variables that satisfies all constraints—that is, a point in the feasible region. The techniques used in constraint satisfaction depend on the kind of constraints being considered.
Branching quantifierIn logic a branching quantifier, also called a Henkin quantifier, finite partially ordered quantifier or even nonlinear quantifier, is a partial ordering of quantifiers for Q ∈ {∀,∃}. It is a special case of generalized quantifier. In classical logic, quantifier prefixes are linearly ordered such that the value of a variable ym bound by a quantifier Qm depends on the value of the variables y1, ..., ym−1 bound by quantifiers Qy1, ..., Qym−1 preceding Qm. In a logic with (finite) partially ordered quantification this is not in general the case.
Forme prénexeUne formule de la logique du premier ordre est en forme prénexe si tous ses quantificateurs ( et ) apparaissent à gauche dans cette formule. C’est-à-dire, G est en forme prénexe si et seulement si avec et une formule sans quantificateurs. Toutes les formules du premier ordre sont logiquement équivalentes à une formule en forme prénexe. La complexité d'une formule de logique mise en forme prénexe se mesure à son premier quantificateur et au nombre d'alternance de blocs de quantificateurs universels ou existentiels qui le suivent et précèdent la formule sans quantificateur.
Satisfiability modulo theoriesEn informatique et en logique mathématique, un problème de satisfiabilité modulo des théories (SMT) est un problème de décision pour des formules de logique du premier ordre avec égalité (sans quantificateurs), combinées à des théories dans lesquelles sont exprimées certains symboles de prédicat et/ou certaines fonctions. Des exemples de théories incluent la théorie des nombres réels, la théorie de l’arithmétique linéaire, des théories de diverses structures de données comme les listes, les tableaux ou les tableaux de bits, ainsi que des combinaisons de celles-ci.
Predicate variableIn mathematical logic, a predicate variable is a predicate letter which functions as a "placeholder" for a relation (between terms), but which has not been specifically assigned any particular relation (or meaning). Common symbols for denoting predicate variables include capital roman letters such as , and , or lower case roman letters, e.g., . In first-order logic, they can be more properly called metalinguistic variables.
Second-order logicIn logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence says that for every formula P, and every individual x, either Px is true or not(Px) is true (this is the law of excluded middle).
Constraint logic programmingConstraint logic programming is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction. A constraint logic program is a logic program that contains constraints in the body of clauses. An example of a clause including a constraint is . In this clause, is a constraint; A(X,Y), B(X), and C(Y) are literals as in regular logic programming. This clause states one condition under which the statement A(X,Y) holds: X+Y is greater than zero and both B(X) and C(Y) are true.
Canonical normal formIn Boolean algebra, any Boolean function can be expressed in the canonical disjunctive normal form (CDNF) or minterm canonical form, and its dual, the canonical conjunctive normal form (CCNF) or maxterm canonical form. Other canonical forms include the complete sum of prime implicants or Blake canonical form (and its dual), and the algebraic normal form (also called Zhegalkin or Reed–Muller). Minterms are called products because they are the logical AND of a set of variables, and maxterms are called sums because they are the logical OR of a set of variables.