Mesure de HaarEn mathématiques, une mesure de Haar sur un groupe localement compact est une mesure de Borel quasi-régulière non nulle invariante par translation à gauche. Autrement dit, pour toute partie borélienne B de G, et pour tout g dans G, on a : L'existence d'une mesure de Haar est assurée dans tout groupe localement compact. Elle est finie sur les parties compactes de G. De plus, toute mesure borélienne complexe invariante par translations à gauche s'écrit où est un nombre complexe.
Subshift of finite typeIn mathematics, subshifts of finite type are used to model dynamical systems, and in particular are the objects of study in symbolic dynamics and ergodic theory. They also describe the set of all possible sequences executed by a finite state machine. The most widely studied shift spaces are the subshifts of finite type. Let V be a finite set of n symbols (alphabet). Let X denote the set V^\Z of all bi-infinite sequences of elements of V together with the shift operator T. We endow V with the discrete topology and X with the product topology.
Condition initialeEn physique ou en mathématique, on définit comme conditions initiales les éléments nécessaires à la détermination de la solution complète et si possible unique d'un problème, éléments qui décrivent l'état du système à l'instant initial, c'est-à-dire l'état de départ. Plus formellement, on appelle « condition initiale » l'espace d'état d'un système étudié à l'instant initial. C'est ce qui permet de déterminer les coefficients des solutions des équations différentielles, par exemple les équations de mouvement des corps.
Nombre positifUn nombre positif est un nombre qui est supérieur à zéro, par exemple 3 ou e. En dehors des textes mathématiques, lorsqu'on parle de nombres positifs ou négatifs, le nombre zéro est généralement exclu. Ainsi le dictionnaire Lexis précise : . L'Académie française, dans la neuvième édition de son dictionnaire précise quant à elle qu'un nombre positif est un nombre . En français, le nombre zéro est considéré tantôt comme étant à la fois positif et négatif, tantôt comme n'étant ni positif, ni négatif.
Mesure de BorelIn mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below. Let be a locally compact Hausdorff space, and let be the smallest σ-algebra that contains the open sets of ; this is known as the σ-algebra of Borel sets. A Borel measure is any measure defined on the σ-algebra of Borel sets.
Large numbersLarge numbers are numbers significantly larger than those typically used in everyday life (for instance in simple counting or in monetary transactions), appearing frequently in fields such as mathematics, cosmology, cryptography, and statistical mechanics. They are typically large positive integers, or more generally, large positive real numbers, but may also be other numbers in other contexts. Googology is the study of nomenclature and properties of large numbers.
Complétion d'une mesureEn mathématiques, une mesure μ est dite complète lorsque tout ensemble négligeable pour cette mesure appartient à la tribu sur laquelle μ est définie. Lorsqu'une mesure n'est pas complète, il existe un procédé assez simple de complétion de la mesure, c'est-à-dire de construction d'une mesure complète apparentée de très près à la mesure initiale. Ainsi la mesure de Lebesgue (considérée comme mesure sur la tribu de Lebesgue) est la complétion de la mesure dite parfois « mesure de Borel-Lebesgue », c'est-à-dire sa restriction à la tribu borélienne.
NombreUn nombre est un concept permettant d’évaluer et de comparer des quantités ou des rapports de grandeurs, mais aussi d’ordonner des éléments en indiquant leur rang. Souvent écrits à l’aide d’un ou plusieurs chiffres, les nombres interagissent par le biais d’opérations qui sont résumées par des règles de calcul. Les propriétés de ces relations entre les nombres sont l’objet d’étude de l’arithmétique, qui se prolonge avec la théorie des nombres.
Attracteur de HénonL'attracteur de Hénon est un système dynamique à temps discret. C'est l'un des systèmes dynamiques ayant un comportement chaotique les plus étudiés. L'attracteur de Hénon prend tout point du plan (x, y) et lui associe le nouveau point : Il dépend de deux paramètres, a et b, qui ont pour valeurs canoniques : a = 1,4 et b = 0,3. Pour ces valeurs, l'attracteur de Hénon est chaotique. Pour d'autres valeurs de a et b, il peut être chaotique, intermittent ou converger vers une orbite périodique.
Definable real numberInformally, a definable real number is a real number that can be uniquely specified by its description. The description may be expressed as a construction or as a formula of a formal language. For example, the positive square root of 2, , can be defined as the unique positive solution to the equation , and it can be constructed with a compass and straightedge. Different choices of a formal language or its interpretation give rise to different notions of definability.