StéréopsieLa stéréopsie, composé des mots grecs στερεός, qui signifie « ferme, dur » et ὄψις qui signifie « œil » ou « vision », est le processus permettant à un être humain ou un animal doué de vision binoculaire de percevoir son environnement en trois dimensions. Chez l'être humain, le test de stéréopsie permet à l'ophtalmologiste et à l'optométriste de détecter si le patient est doté d'une bonne perception visuelle du relief et de la profondeur.
Capteur photographiqueUn capteur photographique est un composant électronique photosensible servant à convertir un rayonnement électromagnétique (UV, visible ou IR) en un signal électrique analogique. Ce signal est ensuite amplifié, puis numérisé par un convertisseur analogique-numérique et enfin traité pour obtenir une . Le capteur est donc le composant de base des appareils photo et des caméras numériques, l'équivalent du film (ou pellicule) en photographie argentique.
Perception de la profondeurLa perception de la profondeur est la capacité visuelle à percevoir le monde en trois dimensions. La perception de la profondeur et du relief se base sur différents types d'indices visuels qu'il est possible de classer en trois catégories : en premier lieu ceux qui dépendent du mouvement ; parmi les autres, ceux qui requièrent la vision binoculaire ; enfin, ceux perçus avec un seul œil. Les objets de l'environnement présentent en général plusieurs indices convergents sur leur position dans la profondeur de l'espace.
Image rectificationImage rectification is a transformation process used to project images onto a common image plane. This process has several degrees of freedom and there are many strategies for transforming images to the common plane. Image rectification is used in computer stereo vision to simplify the problem of finding matching points between images (i.e. the correspondence problem), and in geographic information systems to merge images taken from multiple perspectives into a common map coordinate system.
DiscrétisationEn mathématiques appliquées, la discrétisation est la transposition d'un état (fonction, modèle, variable, équation) en un équivalent . Ce procédé constitue en général une étape préliminaire à la résolution numérique d'un problème ou sa programmation sur machine. Un cas particulier est la dichotomisation où le nombre de classes discrètes est 2, où on peut approcher une variable continue en une variable binaire. La discrétisation est aussi reliée aux mathématiques discrètes, et compte parmi les composantes importantes de la programmation granulaire.
Discretization errorIn numerical analysis, computational physics, and simulation, discretization error is the error resulting from the fact that a function of a continuous variable is represented in the computer by a finite number of evaluations, for example, on a lattice. Discretization error can usually be reduced by using a more finely spaced lattice, with an increased computational cost. Discretization error is the principal source of error in methods of finite differences and the pseudo-spectral method of computational physics.
Injection (mathématiques)Une application f est dite injective ou est une injection si tout élément de son ensemble d'arrivée a au plus un antécédent par f, ce qui revient à dire que deux éléments distincts de son ensemble de départ ne peuvent pas avoir la même par f. Lorsque les ensembles de départ et d'arrivée de f sont tous les deux égaux à la droite réelle R, f est injective si et seulement si son graphe intersecte toute droite horizontale en au plus un point. Si une application injective est aussi surjective, elle est dite bijective.
Image d'une applicationvignette| est une fonction de dans . L'ovale jaune dans est l'image de . On appelle image d'une application f (d'un ensemble A vers un ensemble B) l' par f de l'ensemble de départ A. C'est donc le sous-ensemble de B contenant les de tous les éléments de A, et uniquement ces images. On le note Im(f). Exemple : Une application est surjective si et seulement si son image coïncide avec son ensemble d'arrivée. Lemme des noyaux Catégorie abélienne Limite projective Noyau (algèbre) (autrement dit : d'une relation
Fonction (mathématiques)vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
Statistique bayésienneLa statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais.