The non-linear stochastic wave equation in high dimensions
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Population equations for infinitely large networks of spiking neurons have a long tradition in theoret-ical neuroscience. In this work, we analyze a recent generalization of these equations to populations of finite size, which takes the form of a nonlinear ...
We investigate the regularizing effect of certain additive continuous perturbations on SDEs with multiplicative fractional Brownian motion (fBm). Traditionally, a Lipschitz requirement on the drift and diffusion coefficients is imposed to ensure existence ...
In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamical ...
We consider the problem of nonparametric estimation of the drift and diffusion coefficients of a Stochastic Differential Equation (SDE), based on n independent replicates {Xi(t) : t is an element of [0 , 1]}13 d B(t), where alpha is an element of {0 , 1} a ...
Path integrals play a crucial role in describing the dynamics of physical systems subject to classical or quantum noise. In fact, when correctly normalized, they express the probability of transition between two states of the system. In this work, we show ...
Given a sequence L & x2d9;epsilon of Levy noises, we derive necessary and sufficient conditions in terms of their variances sigma 2(epsilon) such that the solution to the stochastic heat equation with noise sigma(epsilon)-1L & x2d9;epsilon converges in law ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
Stochastic phenomena are often described by Langevin equations, which serve as a mesoscopic model for microscopic dynamics. It has been known since the work of Parisi and Sourlas that reversible (or equilibrium) dynamics present supersymmetries (SUSYs). Th ...
We study some linear and nonlinear shot noise models where the jumps are drawn from a compound Poisson process with jump sizes following an Erlang-m distribution. We show that the associated Master equation can be written as a spatial mth order partial dif ...
We consider several aspects of conjugating symmetry methods, including the method of invariants, with an asymptotic approach. In particular we consider how to extend to the stochastic setting several ideas which are well established in the deterministic on ...