Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We investigate the regularizing effect of certain additive continuous perturbations on SDEs with multiplicative fractional Brownian motion (fBm). Traditionally, a Lipschitz requirement on the drift and diffusion coefficients is imposed to ensure existence and uniqueness of the SDE. We show that suitable perturbations restore existence, uniqueness and regularity of the flow for the resulting equation, even when both the drift and the diffusion coefficients are distributional, thus extending the program of regularization by noise to the case of multiplicative SDEs. Our method relies on a combination of the nonlinear Young formalism developed by Catellier and Gubinelli (Stochastic Process. Appl. 126 (2016) 2323–2366), and stochastic averaging estimates recently obtained by Hairer and Li (Ann. Probab. 48 (2020) 1826–1860).
Maria Colombo, Silja Noëmi Aline Haffter
Victor Panaretos, Neda Mohammadi Jouzdani
Tilo Schwalger, Valentin Marc Schmutz, Eva Löcherbach