Rayon de convergenceLe rayon de convergence d'une série entière est le nombre réel positif ou +∞ égal à la borne supérieure de l'ensemble des modules des nombres complexes où la série converge (au sens classique de la convergence simple): Si R est le rayon de convergence d'une série entière, alors la série est absolument convergente sur le disque ouvert D(0, R) de centre 0 et de rayon R. Ce disque est appelé disque de convergence. Cette convergence absolue entraine ce qui est parfois qualifié de convergence inconditionnelle : la valeur de la somme en tout point de ce disque ne dépend pas de l'ordre des termes.
Filtre de Kalmanvignette| Concept de base du filtre de Kalman. En statistique et en théorie du contrôle, le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d'un système dynamique à partir d'une série de mesures incomplètes ou bruitées. Le filtre a été nommé d'après le mathématicien et informaticien américain d'origine hongroise Rudolf Kálmán. Le filtre de Kalman est utilisé dans une large gamme de domaines technologiques (radar, vision électronique, communication...).
Pédagogie critiquealt=Le chemin de l'indépendance|vignette|460x460px|Apprenants sur le chemin de l'indépendance selon les penseurs de la Pédagogie Critique, à Auderghem. (Photographie libre de droits, 2020). La pédagogie critique est une philosophie de l'éducation et un mouvement social qui développe et applique des concepts de la théorie critique et de traditions connexes aux domaines de l'éducation et des études culturelles.
Convergence simpleEn mathématiques, la convergence simple ou ponctuelle est une notion de convergence dans un espace fonctionnel, c’est-à-dire dans un ensemble de fonctions entre deux espaces topologiques. C'est une définition peu exigeante : elle est plus facile à établir que d'autres formes de convergence, notamment la convergence uniforme. Le passage à la limite possède donc moins de propriétés : une suite de fonctions continues peut ainsi converger simplement vers une fonction qui ne l'est pas.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Compact convergenceIn mathematics compact convergence (or uniform convergence on compact sets) is a type of convergence that generalizes the idea of uniform convergence. It is associated with the compact-open topology. Let be a topological space and be a metric space. A sequence of functions is said to converge compactly as to some function if, for every compact set , uniformly on as . This means that for all compact , If and with their usual topologies, with , then converges compactly to the constant function with value 0, but not uniformly.
Instruction set architectureIn computer science, an instruction set architecture (ISA), also called computer architecture, is an abstract model of a computer. A device that executes instructions described by that ISA, such as a central processing unit (CPU), is called an implementation. In general, an ISA defines the supported instructions, data types, registers, the hardware support for managing main memory, fundamental features (such as the memory consistency, addressing modes, virtual memory), and the input/output model of a family of implementations of the ISA.
Microprocesseur à jeu d'instruction étenduUn microprocesseur à jeu d'instruction étendu (, CISC) désigne un microprocesseur possédant un jeu d'instructions comprenant de très nombreuses instructions . L'architecture CISC est opposée à l'architecture RISC qui au contraire, limite ses instructions à l'essentiel afin de réduire la quantité de transistors. Le premier microprocesseur est l'Intel 4004, d'architecture 4 bits, sorti en 1971, suivi de l'Intel 8008, d'architecture , sorti en 1972.