Couche limitevignette|redresse=2|Couches limites laminaires et turbulentes d'un écoulement sur une plaque plane (avec profil des vitesses moyennes). La couche limite est la zone d'interface entre un corps et le fluide environnant lors d'un mouvement relatif entre les deux. Elle est la conséquence de la viscosité du fluide et est un élément important en mécanique des fluides (aérodynamique, hydrodynamique), en météorologie, en océanographie vignette|Profil de vitesses dans une couche limite.
Contrainte de cisaillementvignette|Une force est appliquée à la partie supérieure d'un carré, dont la base est bloquée. La déformation en résultant transforme le carré en parallélogramme. Une contrainte de cisaillement τ (lettre grecque « tau ») est une contrainte mécanique appliquée parallèlement à la section transversale d'un élément allongé, par opposition aux contraintes normales qui sont appliquées perpendiculairement à cette surface (donc longitudinalement, c.-à-d. selon l'axe principal de la pièce). C'est le rapport d'une force à une surface.
Turbulencevignette|Léonard de Vinci s'est notamment passionné pour l'étude de la turbulence. La turbulence désigne l'état de l'écoulement d'un fluide, liquide ou gaz, dans lequel la vitesse présente en tout point un caractère tourbillonnaire : tourbillons dont la taille, la localisation et l'orientation varient constamment. Les écoulements turbulents se caractérisent donc par une apparence très désordonnée, un comportement difficilement prévisible et l'existence de nombreuses échelles spatiales et temporelles.
Dilatancevignette|Réponse typique d'un sable dense soumis à l'essai triaxial : on représente ici la différence de contraintes normales en fonction de la déformation verticale. Le phénomène de dilatance d'un sol décrit la variation de volume que l'on observe dans les matériaux granulaires lorsqu'ils sont soumis à un cisaillement. Cet effet a été décrit scientifiquement pour la première fois par Osborne Reynolds en 1885-86. Contrairement à la plupart des autres matériaux solides, un matériau granulaire compacté tend à se dilater (à s'expandre en volume) lorsqu'on le cisaille.
Effet Coandăvignette|L'effet Coandă du flux d'air explique le maintien de la balle en hauteur lorsque le flux d'air est incliné, comme ici. vignette|Sustentation d'un tube à essai sous un jet d'air. L’effet Coandă (du nom de l'ingénieur roumain Henri Coandă, né en 1886) est l’attraction ou l'attachement d’un jet de fluide par une surface convexe sur laquelle il s'écoule. Le fluide suit la surface et subit une déviation avant de s'en détacher avec une trajectoire différente de celle qu'il avait en amont.
Boundary layer thicknessThis page describes some of the parameters used to characterize the thickness and shape of boundary layers formed by fluid flowing along a solid surface. The defining characteristic of boundary layer flow is that at the solid walls, the fluid's velocity is reduced to zero. The boundary layer refers to the thin transition layer between the wall and the bulk fluid flow. The boundary layer concept was originally developed by Ludwig Prandtl and is broadly classified into two types, bounded and unbounded.
Sediment transportSediment transport is the movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and the movement of the fluid in which the sediment is entrained. Sediment transport occurs in natural systems where the particles are clastic rocks (sand, gravel, boulders, etc.), mud, or clay; the fluid is air, water, or ice; and the force of gravity acts to move the particles along the sloping surface on which they are resting.
Écoulement laminaireEn mécanique des fluides, l'écoulement laminaire est le mode d'écoulement d'un fluide où l'ensemble du fluide s'écoule plus ou moins dans la même direction, sans que les différences locales se contrarient (par opposition au régime turbulent, fait de tourbillons qui se contrarient mutuellement). L'écoulement laminaire est généralement celui qui est recherché lorsqu'on veut faire circuler un fluide dans un tuyau (car il crée moins de pertes de charge), ou faire voler un avion (car il est plus stable, et prévisible par les équations).
Coefficient de traînéeEn dynamique des fluides, le coefficient de traînée, dont le symbole normalisé est Cx, CA ou CD ( en anglais, en allemand) fait partie de la famille des coefficients aérodynamiques. C'est un nombre sans dimension qui est utilisé pour quantifier la traînée ou résistance d'un objet dans un fluide (comme, par exemple, l'air ou l'eau). Il est toujours associé à une surface particulière (selon le contexte, appelée maître-couple, surface alaire ou plus généralement surface de référence).
Sédimentvignette|Le processus de sédimentation est d'abord une loi physique, liée à la pesanteur. Des phénomènes biologiques peuvent l'accélérer ou le réduire, intervenant notamment dans les cycles écologiques et biogéochimiques. vignette|La sédimentation dépend du contexte géomorphologique, climatique, écologique et de la vitesse de l'eau. vignette|Une faune spécifique aux sédiments contribue à leur nature, à leur mobilité et à la biodisponibilité des éléments qu'ils contiennent ; particules, nutriments, ou polluants.