Orthogonal transformationIn linear algebra, an orthogonal transformation is a linear transformation T : V → V on a real inner product space V, that preserves the inner product. That is, for each pair u, v of elements of V, we have Since the lengths of vectors and the angles between them are defined through the inner product, orthogonal transformations preserve lengths of vectors and angles between them. In particular, orthogonal transformations map orthonormal bases to orthonormal bases. Orthogonal transformations are injective: if then , hence , so the kernel of is trivial.
Immeuble de Bruhat-TitsEn mathématiques, un immeuble, aussi appelé l’immeuble Tits et l’immeuble Bruhat-Tits (nommé d'après François Bruhat et Jacques Tits) est une structure combinatoire et géométrique qui généralise simultanément certains aspects des variétés de drapeaux, des plans projectifs finis et des espaces riemanniens symétriques. Introduite par Jacques Tits comme moyen de comprendre la structure des groupes exceptionnels de type de Lie, la théorie a également été utilisée pour l'étude de la géométrie et de la topologie des espaces homogènes des groupes de Lie p-adiques et leurs sous-groupes de symétrie discrets, de la même manière que les arbres ont été utilisés pour étudier les groupes libres.
Pavage apériodiqueEn mathématiques, et plus particulièrement en géométrie, un pavage apériodique est un pavage non périodique ne contenant pas de sections périodiques arbitrairement grandes. Les pavages de Penrose sont les exemples les plus connus de pavages apériodiques, mais il existe plusieurs autres méthodes pour en construire. Les pavages apériodiques servent de modèles mathématiques pour les quasi-cristaux, des objets physiques découverts en 1982 par Dan Shechtman, mais dont la structure locale exacte est encore mal comprise.
Superalgèbre de LieUne superalgèbre de Lie est une extension de la notion d'algèbre de Lie par l'ajout d'une Z-graduation. Cette graduation sépare la superalgèbre en la somme directe d'une partie paire et d'une partie impaire. Cette structure est utilisée en physique théorique pour décrire la supersymétrie. Les éléments de l'algèbre peuvent y être représentés par des opérateurs différentiels. Dans la plupart de ces théories, les éléments pairs correspondent aux bosons et les éléments impairs aux fermions.
SupermanifoldIn physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below. An informal definition is commonly used in physics textbooks and introductory lectures. It defines a supermanifold as a manifold with both bosonic and fermionic coordinates. Locally, it is composed of coordinate charts that make it look like a "flat", "Euclidean" superspace.