HyperboloïdeUn hyperboloïde est en géométrie une surface du second degré de l'espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de posséder un centre de symétrie et de s'étendre à l'infini. Les sections non triviales d'un hyperboloïde avec un plan sont des paraboles, des ellipses ou des hyperboles. On distingue deux types d'hyperboloïdes, connexes ou non, chaque partie connexe s'appelant une nappe. Le cône peut être vu comme une forme dégénérée d'hyperboloïde.
List of hyperboloid structuresThis page is a list of hyperboloid structures. These were first applied in architecture by Russian engineer Vladimir Shukhov (1853–1939). Shukhov built his first example as a water tower (hyperbolic shell) for the 1896 All-Russian Exposition. Subsequently, more have been designed by other architects, including Le Corbusier, Antoni Gaudí, Eduardo Torroja, Oscar Niemeyer and Ieoh Ming Pei. The shapes are doubly ruled surfaces, which can be classed as: Hyperbolic paraboloids, such as saddle roofs Hyperboloid of one sheet, such as cooling towers Image:Ruled hyperboloid.
Prime manifoldIn topology, a branch of mathematics, a prime manifold is an n-manifold that cannot be expressed as a non-trivial connected sum of two n-manifolds. Non-trivial means that neither of the two is an n-sphere. A similar notion is that of an irreducible n-manifold, which is one in which any embedded (n − 1)-sphere bounds an embedded n-ball. Implicit in this definition is the use of a suitable , such as the category of differentiable manifolds or the category of piecewise-linear manifolds.
Möbius planeIn mathematics, the classical Möbius plane (named after August Ferdinand Möbius) is the Euclidean plane supplemented by a single point at infinity. It is also called the inversive plane because it is closed under inversion with respect to any generalized circle, and thus a natural setting for planar inversive geometry. An inversion of the Möbius plane with respect to any circle is an involution which fixes the points on the circle and exchanges the points in the interior and exterior, the center of the circle exchanged with the point at infinity.
Structure hyperboloïdevignette|Un château d'eau de forme hyperboloïde aux Essarts-le-Roi. On y voit la génératrice marquée architecturalement sur le pied creux et le réservoir qui se confondent et dont on voit les limites par les jours de l'accès; Le réservoir est un voile mince de béton sous tensions, le pied un voile sous compression. Les structures à nappe hyperboloïde sont généralement des treillis ou des ossatures épousant la forme d'un hyperboloïde à une nappe. Leur coque extérieure est armée par des armatures droites combinées pour former une ou deux familles d'hélices entrecroisées.
Projection (mathematics)In mathematics, a projection is an idempotent mapping of a set (or other mathematical structure) into a subset (or sub-structure). In this case, idempotent means that projecting twice is the same as projecting once. The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost. An everyday example of a projection is the casting of shadows onto a plane (sheet of paper): the projection of a point is its shadow on the sheet of paper, and the projection (shadow) of a point on the sheet of paper is that point itself (idempotency).