Projection cylindrique équidistanteLa projection cylindrique équidistante, encore appelée projection équirectangulaire ou projection géographique, est un type de projection cartographique très simple attribué à Marinus de Tyr vers 100 ap. J.-C.. La projection consiste à considérer les coordonnées polaires de latitude et longitude comme des coordonnées cartésiennes. En ce sens, on parle parfois de « non-projection ». Cependant la transformation effectuée se définit (partiellement) comme une projection de la surface du globe sur la surface d'un cylindre, dont l'axe se confond avec l'axe des pôles et contient les origines des vecteurs de projection.
Sphèrevignette|Rendu en fil de fer d'une sphère dans un espace euclidien. En géométrie dans l'espace, une sphère est une surface constituée de tous les points situés à une même distance d'un point appelé centre. La valeur de cette distance au centre est le rayon de la sphère. La géométrie sphérique est la science qui étudie les propriétés des sphères. La surface de la Terre peut, en première approximation, être modélisée par une sphère dont le rayon est d'environ .
Plan projectifEn mathématiques, la notion de plan projectif a deux sens distincts, suivant que l'approche est algébrique ou par les axiomes d'incidence entre pointe et droites, l'approche axiomatique donnant une notion qui s'avère un peu plus générale que l'approche algébrique. Un plan projectif en géométrie algébrique est une variété particulière : l'espace projectif de dimension 2. On peut associer un plan projectif à tout corps commutatif (corps des réels, corps des complexes, corps finis) ou non commutatif (quaternions.
4-manifoldIn mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic).
Projection azimutale équivalente de LambertLa projection azimutale équivalente de Lambert est une manière de projeter une sphère sur un plan, et en particulier, une façon de représenter entièrement la surface de la Terre sous la forme d'un disque. C'est donc une projection cartographique azimutale conçue (parmi d'autres) en 1772 par le mathématicien alsacien Johann Heinrich Lambert. Cette projection de Lambert "projette directement" sur un plan (projection azimutale) et conserve localement les surfaces (projection équivalente) ; mais ne conserve pas les angles (projection non conforme).
Martingale localeDans la théorie des processus stochastiques, une martingale locale est un processus stochastique qui est localement une martingale, ce qui signifie qu'il y a une suite de localisation de temps d'arrêt et que le processus arrêté est une martingale. Soi un espace de probabilité filtré et un processus -adapté avec (zéro à zéro). S'il existe une suite non décroissante de temps d'arrêt de telle que et pour tout le processus arrêté défini par soit une martingale, alors on appelle une martingale locale et on écrit .
Projection de BonneLa projection de Bonne, également appelée projection de Flamsteed modifiée ou projection du Dépôt de la guerre est une projection cartographique qui impose que les parallèles soient des cercles concentriques équidistants, et que l'échelle le long des parallèles soit constante, et égale à celle du méridien d'origine. En outre, le rayon de courbure d'un « parallèle origine » est respecté. Elle est donc équivalente, mais non conforme, sauf au voisinage de son point d'origine.
Projection de Postelvignette|L'emblème des Nations unies est obtenu par une projection de Postel de la Terre à partir du pôle nord. La projection équidistante azimutale, aussi nommée projection de Postel, est une projection cartographique azimutale polaire équidistante pour les méridiens. Pour sa réalisation, on applique en un point P du globe terrestre une feuille de papier plat, et on projette sur cette feuille tout point M de la sphère (sauf le point antipodal de P) en un point M' ayant le même azimut que M et situé à la même distance de P que M.
Stereographic map projectionThe stereographic projection, also known as the planisphere projection or the azimuthal conformal projection, is a conformal map projection whose use dates back to antiquity. Like the orthographic projection and gnomonic projection, the stereographic projection is an azimuthal projection, and when on a sphere, also a perspective projection. On an ellipsoid, the perspective definition of the stereographic projection is not conformal, and adjustments must be made to preserve its azimuthal and conformal properties.
Smooth structureIn mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows one to perform mathematical analysis on the manifold. A smooth structure on a manifold is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold is an atlas for such that each transition function is a smooth map, and two smooth atlases for are smoothly equivalent provided their union is again a smooth atlas for This gives a natural equivalence relation on the set of smooth atlases.