Tolerance intervalA tolerance interval (TI) is a statistical interval within which, with some confidence level, a specified sampled proportion of a population falls. "More specifically, a 100×p%/100×(1−α) tolerance interval provides limits within which at least a certain proportion (p) of the population falls with a given level of confidence (1−α)." "A (p, 1−α) tolerance interval (TI) based on a sample is constructed so that it would include at least a proportion p of the sampled population with confidence 1−α; such a TI is usually referred to as p-content − (1−α) coverage TI.
Binomial proportion confidence intervalIn statistics, a binomial proportion confidence interval is a confidence interval for the probability of success calculated from the outcome of a series of success–failure experiments (Bernoulli trials). In other words, a binomial proportion confidence interval is an interval estimate of a success probability p when only the number of experiments n and the number of successes nS are known. There are several formulas for a binomial confidence interval, but all of them rely on the assumption of a binomial distribution.
Fiducial inferenceFiducial inference is one of a number of different types of statistical inference. These are rules, intended for general application, by which conclusions can be drawn from samples of data. In modern statistical practice, attempts to work with fiducial inference have fallen out of fashion in favour of frequentist inference, Bayesian inference and decision theory. However, fiducial inference is important in the history of statistics since its development led to the parallel development of concepts and tools in theoretical statistics that are widely used.
Coverage probabilityIn statistics, the coverage probability, or coverage for short, is the probability that a confidence interval or confidence region will include the true value (parameter) of interest. It can be defined as the proportion of instances where the interval surrounds the true value as assessed by long-run frequency. The fixed degree of certainty pre-specified by the analyst, referred to as the confidence level or confidence coefficient of the constructed interval, is effectively the nominal coverage probability of the procedure for constructing confidence intervals.
Correction de BonferroniEn statistiques, la correction de Bonferroni est une méthode pour corriger le seuil de significativité lors de comparaisons multiples. La correction de Bonferroni est la méthode de correction la plus simple, bien qu'elle soit conservatrice étant donné qu'elle présente un risque conséquent d'. En effet, cette méthode ne prend pas en compte quelques informations, comme la distribution des valeurs p des différentes comparaisons.
Plan d'expériencesOn nomme plan d'expériences (en anglais, design of experiments ou DOE) la suite ordonnée d'essais d'une expérimentation, chacun permettant d'acquérir de nouvelles connaissances en maîtrisant un ou plusieurs paramètres d'entrée pour obtenir des résultats validant un modèle avec une bonne économie de moyens (nombre d'essais le plus faible possible, par exemple). Un exemple classique est le « plan en étoile » où en partant d'un jeu de valeurs choisi pour les paramètres d'un essai central, on complète celui-ci par des essais où chaque fois un seul des facteurs varie « toutes choses égales par ailleurs ».
StatistiqueLa statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».
Jeu de donnéesvignette|Représentation du jeu de données Iris sur ses quatre dimensions|420x420px Un jeu de données (en anglais dataset ou data set) est un ensemble de valeurs « organisées » ou « contextualisées » (alias « données »), où chaque valeur est associée à une variable (ou attribut) et à une observation. Une variable décrit l'ensemble des valeurs décrivant le même attribut et une observation contient l'ensemble des valeurs décrivant les attributs d'une unité (ou individu statistique).
Imputation (statistique)En statistique, l’imputation désigne le processus de remplacement des données manquantes avec des valeurs substituées. Quand un point de données est substitué, on parle d’imputation unitaire ; quand une composante de point de données est substituée, on parle d’imputation d'items. Des données manquantes peuvent être à l'origine de trois types de problèmes : elles peuvent introduire une quantité importante de biais statistiques ; elles peuvent rendre le traitement et l'analyse des données plus laborieux ; elles peuvent réduire l'efficacité des méthodes statistiques.
BiostatistiqueLa biostatistique (mot-valise issu des champs de la biologie et des statistiques) est un champ scientifique constitué par l'application de la science statistique à la biologie et à la médecine. Le domaine d'application des biostatistiques est large. Il peut s'agir de biométrie, de conception méthodologique d'études biologiques ou cliniques, ou encore du recueil, de l'analyse et du traitement statistique de données recueillis lors d'études écologiques, biologiques, agronomiques, halieutiques, de santé publique, de santé environnementale, d'études épidémiologiques, médicales et/ou cliniques, pharmaceutiques, agropharmaceutiques.