Dualité (optimisation)En théorie de l'optimisation, la dualité ou principe de dualité désigne le principe selon lequel les problèmes d'optimisation peuvent être vus de deux perspectives, le problème primal ou le problème dual, et la solution du problème dual donne une borne inférieure à la solution du problème (de minimisation) primal. Cependant, en général les valeurs optimales des problèmes primal et dual ne sont pas forcément égales : cette différence est appelée saut de dualité. Pour les problèmes en optimisation convexe, ce saut est nul sous contraintes.
Constrained optimizationIn mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. The objective function is either a cost function or energy function, which is to be minimized, or a reward function or utility function, which is to be maximized.
Mouvement à force centraleEn mécanique du point, un mouvement à force centrale est le mouvement d'un point matériel M soumis uniquement à une force centrale, c'est-à-dire une force toujours dirigée vers le même point noté O appelé centre de force. Ce type de mouvement est une modélisation de certains phénomènes physiques : il n'est pas rigoureusement présent dans la nature, mais certains mouvements s'en rapprochent. Par exemple, on peut considérer que la Terre est soumise à une force centrale de la part du Soleil.
Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Théorème d'approximation de DirichletLe théorème d'approximation de Dirichlet est le résultat d'approximation diophantienne simultanée de d réels suivant : dont le cas particulier N = Q avec Q entier se démontre par le principe des tiroirs de Dirichlet, ou le résultat suivant (plus général) : qui utilise un théorème de Minkowski ou de Blichfeldt. Ce théorème est appliqué notamment en théorie des nombres (approximations diophantiennes, théorie des séries de Dirichlet) et dans la théorie des fonctions presque périodiques.
Entier relatifEn mathématiques, un entier relatif, un entier rationnel ou simplement un nombre entier est un nombre qui se présente comme un entier naturel auquel on a adjoint un signe positif ou négatif indiquant sa position par rapport à 0 sur un axe orienté. Les entiers positifs (supérieurs à zéro) s'identifient aux entiers naturels : 0, 1, 2, 3... tandis que les entiers négatifs sont leurs opposés : 0, −1, −2, −3... L'entier 0 lui-même est donc le seul nombre à la fois positif et négatif.
Problème du voyageur de commercevignette|Le problème de voyageur de commerce : calculer un plus court circuit qui passe une et une seule fois par toutes les villes (ici 15 villes). En informatique, le problème du voyageur de commerce, ou problème du commis voyageur, est un problème d'optimisation qui consiste à déterminer, étant donné un ensemble de villes, le plus court circuit passant par chaque ville une seule fois. C'est un problème algorithmique célèbre, qui a donné lieu à de nombreuses recherches et qui est souvent utilisé comme introduction à l'algorithmique ou à la théorie de la complexité.
Fraction irréductibleUne fraction irréductible est une fraction pour laquelle il n’existe pas de fraction égale ayant des termes plus petits. Autrement dit, une fraction irréductible ne peut pas être simplifiée. La fraction n'est pas irréductible car 12 et 20 sont des multiples de 4 : (simplification par 4). On peut aussi écrire . La fraction est irréductible car 1 est le seul entier positif qui divise à la fois 3 et 5. On peut simplifier une fraction en divisant ses termes successivement par leurs diviseurs communs apparents (que l'on trouve en appliquant les critères de divisibilité par 2, 3, 5).
Problème d'affectationEn informatique, plus précisément en recherche opérationnelle et d'optimisation combinatoire, le problème d'affectation consiste à attribuer au mieux des tâches à des agents. Chaque agent peut réaliser une unique tâche pour un coût donné et chaque tâche doit être réalisée par un unique agent. Les affectations (c'est-à-dire les couples agent-tâche) ont toutes un coût défini. Le but est de minimiser le coût total des affectations afin de réaliser toutes les tâches.
Problème à N corpsLe problème à N corps est un problème de mécanique céleste consistant à déterminer les trajectoires d'un ensemble de N corps s'attirant mutuellement ; plus précisément, il s'agit de résoudre les équations du mouvement de Newton pour N corps interagissant gravitationnellement, connaissant leurs masses ainsi que leurs positions et vitesses initiales. Le cas (problème à deux corps) a été résolu par Newton, mais dès (problème à trois corps) apparaissent des solutions essentiellement impossibles à expliciter, car sensibles aux conditions initiales.