Diffusion dynamique de la lumièreLa diffusion dynamique de la lumière (en anglais, dynamic light scattering ou DLS) est une technique d'analyse spectroscopique non destructive permettant d'accéder à la taille de particules en suspension dans un liquide ou de chaînes de polymère en solution de de diamètre environ. Lorsque la lumière d'un laser atteint des petites particules dans une microcuvette, la lumière diffuse dans toutes les directions. Ce phénomène est principalement de la diffusion de Rayleigh, diffusion élastique où les particules sont plus petites que la longueur d'onde considérée.
Diffusion BrillouinLa 'diffusion Brillouin' est la diffusion inélastique de la lumière par les ondes acoustiques d'un milieu. Dans une expérience de diffusion Brillouin, on illumine un milieu à l'aide d'un faisceau laser et on détecte la lumière diffusée à une fréquence légèrement différente. Les décalages en fréquence observés sont de l'ordre de 1 à 200 GHz environ. La mesure de ce décalage permet de remonter à certaines propriétés du milieu. Cet effet a été prédit en 1914 par Léon Brillouin.
Diffusion RamanLa diffusion Raman, ou effet Raman, est un phénomène optique découvert indépendamment en 1928 par les physiciens Chandrashekhara Venkata Râman et Leonid Mandelstam. Cet effet consiste en la diffusion inélastique d'un photon, c'est-à-dire le phénomène physique par lequel un milieu peut modifier légèrement la fréquence de la lumière qui y circule. Ce décalage en fréquence correspond à un échange d'énergie entre le rayon lumineux et le milieu. Cet effet physique fut prédit par Adolf Smekal en 1923.
Diffusion statique de la lumièrealt=Exemple de diffusion statique de la lumière utilisant le système du goniomètre.|thumb|Exemple de diffusion statique de la lumière utilisant le système du goniomètre. La diffusion statique de la lumière est une technique utilisée en physique et en chimie pour mesurer l'intensité de la lumière dispersée pour obtenir le poids moléculaire moyen M d'une macromolécule, comme un polymère ou une protéine en solution. La mesure de l'intensité de diffusion à de nombreux angles permet le calcul de la racine carrée du rayon moyen, aussi appelé le rayon de giration.
Méthode de Monte-Carlo par chaînes de MarkovLes méthodes de Monte-Carlo par chaînes de Markov, ou méthodes MCMC pour Markov chain Monte Carlo en anglais, sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes de Monte-Carlo se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner. Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (algorithme de Metropolis-Hastings, échantillonnage de Gibbs), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive).
L-momentIn statistics, L-moments are a sequence of statistics used to summarize the shape of a probability distribution. They are linear combinations of order statistics (L-statistics) analogous to conventional moments, and can be used to calculate quantities analogous to standard deviation, skewness and kurtosis, termed the L-scale, L-skewness and L-kurtosis respectively (the L-mean is identical to the conventional mean). Standardised L-moments are called L-moment ratios and are analogous to standardized moments.
Processus empiriqueEn probabilités, le processus empirique est un processus stochastique qui s'exprime en fonction de la proportion d'objets appartenant à un certain ensemble. Ce processus fait intervenir les déviations d'une statistique autour de sa moyenne et sera donc utile dans l'étude de la plupart d'entre elles. Si sont des variables aléatoires réelles indépendantes et identiquement distribuées (i.i.d.) ayant pour fonction de répartition alors on définit le processus empirique réel par où est la fonction de répartition empirique associée à l'échantillon .
Central momentIn probability theory and statistics, a central moment is a moment of a probability distribution of a random variable about the random variable's mean; that is, it is the expected value of a specified integer power of the deviation of the random variable from the mean. The various moments form one set of values by which the properties of a probability distribution can be usefully characterized.
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Fonction de répartition empiriqueEn statistiques, une fonction de répartition empirique est une fonction de répartition qui attribue la probabilité 1/n à chacun des n nombres dans un échantillon. Soit X,...,X un échantillon de variables iid définies sur un espace de probabilité , à valeurs dans , avec pour fonction de répartition F. La fonction de répartition empirique de l'échantillon est définie par : où est la fonction indicatrice de l'événement A. Pour chaque ω, l'application est une fonction en escalier, fonction de répartition de la loi de probabilité uniforme sur l'ensemble .