Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Réseau de drainage (géomorphologie)vignette|Drainage dendritique: Brahmapoutre, au Tibet, vu de l'espace: la couverture de neige a fondu dans le système de la vallée. En géomorphologie, les réseaux de drainage, appelés aussi réseaux hydrographiques (en anglais drainage systems, aussi connu sous le nom river systems), sont les réseaux formés par l'ensemble des cours d’eau (ruisseaux, rivières, éventuellement fleuve), des lacs et de leurs connexions d'un bassin hydrographique (bassin versant) donné.
Bassin versantvignette|upright=1.5|alt=Vue numérique d'un relief et mise en évidence d'une rivière, de ses affluents et du périmètre de son bassin versant.|Bassin versant de la , en Roumanie. Un bassin versant est une zone géographique de collecte des eaux de surface par un cours d'eau et ses affluents. Il est limité à l'amont par une ligne de partage des eaux qui correspond souvent, mais pas toujours, à une ligne de crête.
Érosionthumb|Effet de la combinaison de l'érosion éolienne et hydrique (Coyote Buttes, Vermilion Cliffs National Monument, États-Unis). thumb|Risque d'érosion des sols (Europe méditerranéenne). En géomorphologie, l’érosion est le processus de dégradation et de transformation du relief, et donc des sols, roches, berges et littoraux qui est causé par tout agent externe (donc autre que la tectonique). Un relief dont le modelé s'explique principalement par l'érosion est dit « relief d'érosion ».
Well drainageWell drainage means drainage of agricultural lands by wells. Agricultural land is drained by pumped wells (vertical drainage) to improve the soils by controlling water table levels and soil salinity. Subsurface (groundwater) drainage for water table and soil salinity in agricultural land can be done by horizontal and vertical drainage systems. Horizontal drainage systems are drainage systems using open ditches (trenches) or buried pipe drains. Vertical drainage systems are drainage systems using pumped wells, either open dug wells or tube wells.
Drainage agricolevignette|Drainage agricole. En agriculture, sylviculture et parfois dans le domaine de l'urbanisme, le drainage est une opération qui consiste à provoquer artificiellement l'évacuation de l'eau gravitaire présente dans la macro-porosité du sol à la suite de précipitations. Le drainage a été intensivement pratiqué dans presque tous les bassins hydrographiques d'Europe de l’Ouest, dans certaines zones d’Asie, puis d’Amérique du Nord, non sans impacts hydrologiques et écologiques.
Fractalevignette|Exemple de figure fractale (détail de l'ensemble de Mandelbrot)|alt=Exemple de figure fractale (détail de l'ensemble de Mandelbrot). vignette|Ensemble de Julia en . Une figure fractale est un objet mathématique qui présente une structure similaire à toutes les échelles. C'est un objet géométrique « infiniment morcelé » dont des détails sont observables à une échelle arbitrairement choisie. En zoomant sur une partie de la figure, il est possible de retrouver toute la figure ; on dit alors qu’elle est « auto similaire ».
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Fractal curveA fractal curve is, loosely, a mathematical curve whose shape retains the same general pattern of irregularity, regardless of how high it is magnified, that is, its graph takes the form of a fractal. In general, fractal curves are nowhere rectifiable curves — that is, they do not have finite length — and every subarc longer than a single point has infinite length. A famous example is the boundary of the Mandelbrot set. Fractal curves and fractal patterns are widespread, in nature, found in such places as broccoli, snowflakes, feet of geckos, frost crystals, and lightning bolts.