Earliest deadline first schedulingEarliest deadline first scheduling (« échéance proche = préparation en premier » en anglais) est un algorithme d'ordonnancement préemptif, à priorité dynamique, utilisé dans les systèmes temps réel. Il attribue une priorité à chaque requête en fonction de l'échéance de cette dernière, les tâches dont l’échéance est proche recevant la priorité la plus élevée. Cet algorithme est optimal pour tous types de système de tâches. Cependant, il est assez difficile à mettre en œuvre et est de ce fait peu utilisé.
Ordonnancement dans les systèmes d'exploitationDans les systèmes d'exploitation, l’ordonnanceur est le composant du noyau du système d'exploitation choisissant l'ordre d'exécution des processus sur les processeurs d'un ordinateur. En anglais, l'ordonnanceur est appelé scheduler. Un processus a besoin de la ressource processeur pour exécuter des calculs; il l'abandonne quand se produit une interruption, etc. De nombreux anciens processeurs ne peuvent effectuer qu'un traitement à la fois.
Système temps réelEn informatique, on parle d'un système temps réel lorsque ce système est capable de contrôler (ou piloter) un procédé physique à une vitesse adaptée à l'évolution du procédé contrôlé. Les systèmes informatiques temps réel se différencient des autres systèmes informatiques par la prise en compte de contraintes temporelles dont le respect est aussi important que l'exactitude du résultat, autrement dit le système ne doit pas simplement délivrer des résultats exacts, il doit les délivrer dans des délais imposés.
Système d'exploitation temps réelUn système d'exploitation temps réel, en anglais RTOS pour real-time operating system (généralement prononcé à l’anglaise, en séparant le R de l’acronyme : Are-toss), est un système d'exploitation pour lequel le temps maximum entre un stimulus d'entrée et une réponse de sortie est précisément déterminé. Ces systèmes d'exploitation multitâches sont destinés à des applications temps réel : systèmes embarqués (thermostats programmables, contrôleurs électroménagers, téléphones mobiles, robots industriels, vaisseaux spatiaux, systèmes de contrôle commande industriel, matériel de recherche scientifique).
Rate-monotonic schedulingL'ordonnancement à taux monotone (en anglais, rate-monotonic scheduling) est un algorithme d'ordonnancement temps réel en ligne à priorité constante (statique). Il attribue la priorité la plus forte à la tâche qui possède la plus petite période. RMS est optimal dans le cadre d'un système de tâches périodiques, synchrones, indépendantes et à échéance sur requête avec un ordonnanceur préemptif. De ce fait, il n'est généralement utilisé que pour ordonnancer des tâches vérifiant ces propriétés.
Approximation diophantiennevignette|Meilleurs approximations rationnelles pour les nombres irrationnels Π (vert), e (bleu), φ (rose), √3/2 (gris), 1/√2 (rouge) et 1/√3 (orange) tracées sous forme de pentes y/x avec des erreurs par rapport à leurs vraies valeurs (noirs) par CMG Lee. En théorie des nombres, l'approximation diophantienne, qui porte le nom de Diophante d'Alexandrie, traite de l'approximation des nombres réels par des nombres rationnels.
NP (complexité)La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
Théorème d'approximation de DirichletLe théorème d'approximation de Dirichlet est le résultat d'approximation diophantienne simultanée de d réels suivant : dont le cas particulier N = Q avec Q entier se démontre par le principe des tiroirs de Dirichlet, ou le résultat suivant (plus général) : qui utilise un théorème de Minkowski ou de Blichfeldt. Ce théorème est appliqué notamment en théorie des nombres (approximations diophantiennes, théorie des séries de Dirichlet) et dans la théorie des fonctions presque périodiques.
Dureté (matériau)La dureté d'un matériau est définie comme la résistance mécanique qu'un matériau oppose à la pénétration. Pour mesurer la dureté d'un matériau, un pénétrateur de faible déformabilité (cône ou sphère en diamant, carbure de tungstène lié au cobalt ou acier extra-dur) est enfoncé à la surface du matériau à tester avec une force connue pendant un temps donné. Plus l'empreinte laissée est petite, plus le matériau est dur. La dureté se mesure sur différentes échelles selon le type de matériau considéré.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.