Niveau de FermiLe niveau de Fermi est une caractéristique propre à un système qui traduit la répartition des électrons dans ce système en fonction de la température. La notion de niveau de Fermi est utilisée en physique et en électronique, notamment dans le cadre du développement des composants semi-conducteurs. Concrètement, le niveau de Fermi est une fonction de la température mais il peut être considéré, en première approximation, comme une constante, laquelle équivaudrait alors au niveau de plus haute énergie occupé par les électrons du système à la température de .
Énergie de FermiL'énergie de Fermi, EF, en mécanique quantique, est l'énergie du plus haut état quantique occupé dans un système par des fermions à . Parfois, le terme est confondu avec le niveau de Fermi, qui décrit un sujet proche quoique différent, le niveau de Fermi représentant le potentiel chimique des fermions. Ces deux quantités sont les mêmes à , mais diffèrent pour toute autre température.
Gaz de FermiUn gaz de Fermi idéal est un état de la matière constitué d'un ensemble de nombreux fermions sans interaction. Les fermions sont des particules ayant un spin demi-entier (1/2, 3/2), comme les électrons, les protons et les neutrons ; la propriété essentielle des fermions est de ne pas pouvoir occuper en même temps le même état quantique, en raison du principe d'exclusion de Pauli.
Electron degeneracy pressureIn astrophysics and condensed matter, electron degeneracy pressure is a quantum mechanical effect critical to understanding the stability of white dwarf stars and metal solids. It is a manifestation of the more general phenomenon of quantum degeneracy pressure. In metals and white dwarf stars, electrons can be modeled as a gas of non-interacting electrons confined to a finite volume. In reality, there are strong electromagnetic forces between the negatively charged electrons.
Variété abélienneEn mathématiques, et en particulier, en géométrie algébrique et géométrie complexe, une variété abélienne A est une variété algébrique projective qui est un groupe algébrique. La condition de est l'équivalent de la compacité pour les variétés différentielles ou analytiques, et donne une certaine rigidité à la structure. C'est un objet central en géométrie arithmétique. Une variété abélienne sur un corps k est un groupe algébrique A sur k, dont la variété algébrique sous-jacente est projective, connexe et géométriquement réduite.
Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
Modèle de l'électron libreEn physique du solide, le modèle de l'électron libre est un modèle qui sert à étudier le comportement des électrons de valence dans la structure cristalline d'un solide métallique. Ce modèle, principalement développé par Arnold Sommerfeld, associe le modèle de Drude aux statistiques de Fermi-Dirac (mécanique quantique). Électron Particule dans réseau à une dimension 2.4 Modèle de sommerfeld ou de l'électron libre dans un puits de potentiel, sur le site garmanage.com Catégorie:Physique du solide Catégorie:É
Surface de FermiEn mécanique quantique et en physique de la matière condensée, la surface de Fermi est une limite abstraite utile pour prédire les caractéristiques électriques, magnétiques, etc. de matériaux, en particulier des métaux. La description de la surface de Fermi ne se fait pas dans le réseau cristallin réel, mais dans le réseau réciproque où l'énergie peut être directement exprimée en fonction de la quantité de mouvement. Le réseau réciproque est obtenu par une transformée de Fourier du réseau réel et est un outil indispensable pour la description des propriétés d'un solide en physique.
Variété projectiveEn géométrie algébrique, les variétés projectives forment une classe importante de variétés. Elles vérifient des propriétés de compacité et des propriétés de finitude. C'est l'objet central de la géométrie algébrique globale. Sur un corps algébriquement clos, les points d'une variété projective sont les points d'un ensemble algébrique projectif. On fixe un corps (commutatif) k. Algèbre homogène. Soit B le quotient de par un idéal homogène ( idéal engendré par des polynômes homogènes).
Quartz (minéral)Le quartz est une espèce minérale du groupe des silicates, sous-groupe des tectosilicates, composé de dioxyde de silicium, ou silice, de formule chimique , avec des traces de différents éléments tels que Al, Li, B, Fe, Mg, Ca, Ti, Rb, Na, OH. Il se présente sous la forme ou bien de grands cristaux incolores, colorés ou fumés, ou bien de cristaux microscopiques d'aspect translucide.