Modèle mathématiquevignette|Un automate fini est un exemple de modèle mathématique. Un modèle mathématique est une traduction d'une observation dans le but de lui appliquer les outils, les techniques et les théories mathématiques, puis généralement, en sens inverse, la traduction des résultats mathématiques obtenus en prédictions ou opérations dans le monde réel. Un modèle se rapporte toujours à ce qu’on espère en déduire.
Crystalline siliconCrystalline silicon or (c-Si) Is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal). Crystalline silicon is the dominant semiconducting material used in photovoltaic technology for the production of solar cells. These cells are assembled into solar panels as part of a photovoltaic system to generate solar power from sunlight. In electronics, crystalline silicon is typically the monocrystalline form of silicon, and is used for producing microchips.
Physique atomiqueLa physique atomique est le champ de la physique qui étudie les atomes en tant que systèmes isolés qui comprennent les électrons et le noyau atomique. Elle se concentre essentiellement sur l'arrangement des électrons autour du noyau et sur la façon dont celui-ci est modifié. Cette définition englobe tant les ions que les atomes électriquement neutres. Puisque « atomique » et « nucléaire » sont utilisés de façon synonyme dans le langage courant, la physique atomique est souvent confondue avec la physique nucléaire.
Monocrystalline siliconMonocrystalline silicon, more often called single-crystal silicon, in short mono c-Si or mono-Si, is the base material for silicon-based discrete components and integrated circuits used in virtually all modern electronic equipment. Mono-Si also serves as a photovoltaic, light-absorbing material in the manufacture of solar cells. It consists of silicon in which the crystal lattice of the entire solid is continuous, unbroken to its edges, and free of any grain boundaries (i.e. a single crystal).
Surface (topology)In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.
Décalage vers le rougeLe décalage vers le rouge (en en anglais) est un phénomène astronomique de décalage vers les grandes longueurs d'onde des raies spectrales et de l'ensemble du spectre — ce qui se traduit par un décalage vers le rouge pour le spectre visible — observé parmi les objets astronomiques lointains. À la suite des travaux de Lemaître et Hubble c'est un phénomène bien documenté, considéré comme la preuve initiale de l'expansion de l'Univers et du modèle cosmologique avec le Big Bang.
Décalage d'EinsteinLe décalage vers le rouge gravitationnel, dit décalage d'Einstein, est un effet prédit par les équations d'Albert Einstein de la relativité générale. D'après cette théorie, une fréquence produite dans un champ de gravitation est vue décalée vers le rouge (c'est-à-dire diminuée) quand elle est observée depuis un lieu où la gravitation est moindre. La cause de ce décalage des fréquences est dans la dilatation du temps créée par la gravitation. Mais une autre explication peut être fournie par la contraction des longueurs due à la gravitation, appliquée aux longueurs d'onde.
Surface de RiemannEn géométrie différentielle et géométrie analytique complexe, une surface de Riemann est une variété complexe de dimension 1. Cette notion a été introduite par Bernhard Riemann pour prendre en compte les singularités et les complications topologiques qui accompagnent certains prolongements analytiques de fonctions holomorphes. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann.
ModélisationLa modélisation est la conception et l'utilisation d'un modèle. Selon son objectif (représentation simplifiée, compréhension, prédiction) et les moyens utilisés, la modélisation est dite mathématique, géométrique, 3D, empirique, mécaniste ( modélisation de réseau trophique dans un écosystème), cinématique... Elle nécessite généralement d'être calée par des observations ou mesures faites , lesquelles servent aussi à paramétrer, calibrer ou ajuster le modèle, par exemple en intégrant des facteurs d'influences qui s'avèreraient nécessaires.