Module projectifEn mathématiques, un module projectif est un module P (à gauche par exemple) sur un anneau A tel que pour tout morphisme surjectif f : N → M entre deux A-modules (à gauche) et pour tout morphisme g : P → M, il existe un morphisme h : P → N tel que g = fh, c'est-à-dire tel que le diagramme suivant commute : center Autrement dit : P est projectif si pour tout module N, tout morphisme de P vers un quotient de N se factorise par N.
Module sur un anneauEn mathématiques, et plus précisément en algèbre générale, au sein des structures algébriques, : pour un espace vectoriel, l'ensemble des scalaires forme un corps tandis que pour un module, cet ensemble est seulement muni d'une structure d'anneau (unitaire, mais non nécessairement commutatif). Une partie des travaux en théorie des modules consiste à retrouver les résultats de la théorie des espaces vectoriels, quitte pour cela à travailler avec des anneaux plus maniables, comme les anneaux principaux.
Faisceau (de modules)En mathématique, un faisceau de modules est un faisceau sur un espace localement annelé qui possède une structure de module sur le faisceau structural . Sur un espace localement annelé , un faisceau de -modules (ou un -Module) est un faisceau sur tel que soit un -module pour tout ouvert , et que pour tout ouvert contenu dans , l'application restriction soit compatible avec les structures de modules: pour tous , on a Les notions de sous--modules et de morphismes de -modules sont claires.
Module libreEn algèbre, un module libre est un module M qui possède une base B, c'est-à-dire un sous-ensemble de M tel que tout élément de M s'écrive de façon unique comme combinaison linéaire (finie) d'éléments de B. Une base de M est une partie B de M qui est à la fois : génératrice pour M, c'est-à-dire que tout élément de M est combinaison linéaire d'éléments de B ; libre, c'est-à-dire que pour toutes familles finies (ei)1≤i≤n d'éléments de B deux à deux distincts et (ai)1≤i≤n d'éléments de l'anneau sous-jacent telles que a1e1 + .
Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Catégorie des modulesEn mathématiques, la catégorie des modules sur un monoïde R est une construction qui rend compte abstraitement des propriétés observées dans l'étude des modules sur un anneau, en les généralisant. L'étude de catégories de modules apparaît naturellement en théorie des représentations et en géométrie algébrique. Puisqu'un R-module est un espace vectoriel lorsque R est un corps commutatif, on peut dans un tel cas identifier la catégorie des modules sur R à la sur le corps R.
D-moduleEn mathématiques, un D-module est un module sur un anneau D d'opérateurs différentiels. L'intérêt principal des D-modules réside en son utilisation dans l'étude d'équations aux dérivées partielles. La théorie générale des D-modules nécessite une variété algébrique lisse X définie sur un corps K algébriquement clos de caractéristique nulle, par exemple K = C. Le faisceau des opérateurs différentiels DX est défini comme la OX-algèbre générée par les champs de vecteurs sur X, interprétés comme des dérivations.
Radical de JacobsonEn algèbre, le radical de Jacobson d'un anneau commutatif est l'intersection de ses idéaux maximaux. Cette notion est due à Nathan Jacobson qui le premier en a fait l'étude systématique. Un élément x appartient au radical de Jacobson de l'anneau A si et seulement si 1 + ax est inversible pour tout a de A. Notons J le radical de Jacobson de l'anneau commutatif A et exploitons le fait que (d'après le théorème de Krull) 1 + ax est non inversible si et seulement s'il appartient à un idéal maximal.
Symmetric monoidal categoryIn , a branch of mathematics, a symmetric monoidal category is a (i.e. a category in which a "tensor product" is defined) such that the tensor product is symmetric (i.e. is, in a certain strict sense, naturally isomorphic to for all objects and of the category). One of the prototypical examples of a symmetric monoidal category is the over some fixed field k, using the ordinary tensor product of vector spaces.
Isomorphisme de graphesEn mathématiques, dans le cadre de la théorie des graphes, un isomorphisme de graphes est une bijection entre les sommets de deux graphes qui préserve les arêtes. Ce concept est en accord avec la notion générale d'isomorphisme, une bijection qui préserve les structures. Plus précisément, un isomorphisme f entre les graphes G et H est une bijection entre les sommets de G et ceux de H, telle qu'une paire de sommets {u, v} de G est une arête de G si et seulement si {ƒ(u), ƒ(v)} est une arête de H.