Cortex cérébralLe cortex cérébral (ou écorce cérébrale), d'origine prosencéphalique, est la substance grise périphérique des hémisphères cérébraux. Il se compose de trois couches (pour l'archi- et le paléocortex) à six couches (pour le néocortex) renfermant différentes classes de neurones, d'interneurones et de cellules gliales. Le cortex peut être segmenté en différentes aires selon des critères cytoarchitectoniques (nombre de couches, type de neurones), de leur connexions, notamment avec le thalamus, et de leur fonction.
Cortex entorhinalthumb|upright=1.60|Localisation du cortex entorhinal (en bas de l'image). Le cortex entorhinal est une zone du cerveau, impliquée dans les mécanismes de l'olfaction et de la mémoire. Dans le lobe temporal médian (voire lobe temporal), le long de la scissure rhinale, on peut trouver deux régions corticales importantes, située en dessous de l’hippocampe. Il s’agit du cortex rhinal et du cortex parahippocampique. Le cortex rhinal est lui-même composé de deux sous-régions appelées : cortex entorhinal (aire 28 de Brodmann) et cortex périrhinal.
Glutamate receptorGlutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate (the conjugate base of glutamic acid) is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain where it is the body's most prominent neurotransmitter, the brain's main excitatory neurotransmitter, and also the precursor for GABA, the brain's main inhibitory neurotransmitter.
Dépression synaptique à long termeLa dépression à long terme (DLT) est « une réduction durable de l'efficacité de la transmission synaptique qui fait suite à certains types de stimulation ». Dans la dépression à long terme l'efficacité synaptique se trouve réduite. Cela est dû au fait que les éléments pré-synaptiques et post-synaptiques des neurones ont une décharge nerveuse asynchrone ou ne déchargent plus d'influx nerveux. La puissance de l'influx nerveux est influencée par la participation des récepteurs NDMA, et de leur influx calcique (Ca2+).
Hippocampe (cerveau)thumb|Situation de l'hippocampe en profondeur dans le cerveau humain280px|thumb|Hippocampe en vue 3D. L'hippocampe est une structure du télencéphale des mammifères. Il appartient notamment au système limbique et joue un rôle central dans la mémoire et la navigation spatiale. Chez l'Homme et les autres primates, il se situe dans le lobe temporal médian, sous la surface du cortex, au-dessus de la cinquième circonvolution (replis du cortex) temporale T.
Alpha-2 adrenergic receptorThe alpha-2 (α2) adrenergic receptor (or adrenoceptor) is a G protein-coupled receptor (GPCR) associated with the Gi heterotrimeric G-protein. It consists of three highly homologous subtypes, including α2A-, α2B-, and α2C-adrenergic. Some species other than humans express a fourth α2D-adrenergic receptor as well. Catecholamines like norepinephrine (noradrenaline) and epinephrine (adrenaline) signal through the α2-adrenergic receptor in the central and peripheral nervous systems.
Chemical synapseChemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body. At a chemical synapse, one neuron releases neurotransmitter molecules into a small space (the synaptic cleft) that is adjacent to another neuron.
Équation de NernstEn électrochimie, l'équation de Nernst donne la tension d'équilibre (E) de l'électrode par rapport au potentiel standard (E) du couple redox mis en jeu. Elle n'a de sens que si un seul couple redox est présent en solution (l'équation de Nernst ne s'applique donc pas aux potentiels mixtes) et que si les deux espèces de ce couple sont présentes. Soit la demi-réaction redox suivante toujours présentée dans le sens de la réduction.
Plasticité synaptiqueLa plasticité synaptique, en neurosciences, désigne la capacité des synapses à moduler, à la suite d'un événement particulier - une augmentation ou une diminution ponctuelle et significative de leur activité - l'efficacité de la transmission du signal électrique d'un neurone à l'autre et à conserver, à plus ou moins long terme, une "trace" de cette modulation. De manière schématique, l'efficacité de la transmission synaptique, voire la synapse elle-même, est maintenue et modulée par l'usage qui en est fait.
Potentiel d'inversionLe potentiel d'inversion pour un canal ionique, ou plus généralement pour un courant ionique, est la valeur du potentiel de membrane pour laquelle le flux ionique est nul. Il s'agit en fait de la valeur de potentiel de membrane à laquelle une espèce ionique est en équilibre électro-osmotique. C’est-à-dire que pour ce potentiel de membrane, la force électrique due à la différence de potentiel de part et d'autre de la membrane et la force chimique due à la différence de concentration (ou force osmotique) sont égales et de sens opposés.