Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Plan factorielthumb|right|Expériences statistiques : à gauche, un plan factoriel et, à droite, la surface de réponse obtenue par la méthode des surfaces de réponses En statistiques, un plan factoriel est une expérience qui consiste à choisir des valeurs pour chacun des facteurs en faisant varier simultanément tous les facteurs, de façon exhaustive ou non. Le nombre d'essais peut alors devenir très grand, i.e. on a une explosion combinatoire. Une telle expérience permet l'étude de l'effet de chaque variable sur le processus, ainsi que l'étude de la dépendance entre les variables.
Loi normale multidimensionnelleEn théorie des probabilités, on appelle loi normale multidimensionnelle, ou normale multivariée ou loi multinormale ou loi de Gauss à plusieurs variables, la loi de probabilité qui est la généralisation multidimensionnelle de la loi normale. gauche|vignette|Différentes densités de lois normales en un dimension. gauche|vignette|Densité d'une loi gaussienne en 2D. Une loi normale classique est une loi dite « en cloche » en une dimension.
Quasi-experimentA quasi-experiment is an empirical interventional study used to estimate the causal impact of an intervention on target population without random assignment. Quasi-experimental research shares similarities with the traditional experimental design or randomized controlled trial, but it specifically lacks the element of random assignment to treatment or control. Instead, quasi-experimental designs typically allow the researcher to control the assignment to the treatment condition, but using some criterion other than random assignment (e.
Algorithme de colonies de fourmisLes algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Load profileIn electrical engineering, a load profile is a graph of the variation in the electrical load versus time. A load profile will vary according to customer type (typical examples include residential, commercial and industrial), temperature and holiday seasons. Power producers use this information to plan how much electricity they will need to make available at any given time. Teletraffic engineering uses a similar load curve. In a power system, a load curve or load profile is a chart illustrating the variation in demand/electrical load over a specific time.
Randomized experimentIn science, randomized experiments are the experiments that allow the greatest reliability and validity of statistical estimates of treatment effects. Randomization-based inference is especially important in experimental design and in survey sampling. In the statistical theory of design of experiments, randomization involves randomly allocating the experimental units across the treatment groups. For example, if an experiment compares a new drug against a standard drug, then the patients should be allocated to either the new drug or to the standard drug control using randomization.
Modèle linéairevignette|Données aléatoires sous forme de points, et leur régression linéaire. Un modèle linéaire multivarié est un modèle statistique dans lequel on cherche à exprimer une variable aléatoire à expliquer en fonction de variables explicatives X sous forme d'un opérateur linéaire. Le modèle linéaire est donné selon la formule : où Y est une matrice d'observations multivariées, X est une matrice de variables explicatives, B est une matrice de paramètres inconnus à estimer et U est une matrice contenant des erreurs ou du bruit.
No free lunch in search and optimizationIn computational complexity and optimization the no free lunch theorem is a result that states that for certain types of mathematical problems, the computational cost of finding a solution, averaged over all problems in the class, is the same for any solution method. The name alludes to the saying "no such thing as a free lunch", that is, no method offers a "short cut". This is under the assumption that the search space is a probability density function. It does not apply to the case where the search space has underlying structure (e.
Optimisation de codeEn programmation informatique, l'optimisation de code est la pratique consistant à améliorer l'efficacité du code informatique d'un programme ou d'une bibliothèque logicielle. Ces améliorations permettent généralement au programme résultant de s'exécuter plus rapidement, de prendre moins de place en mémoire, de limiter sa consommation de ressources (par exemple les fichiers), ou de consommer moins d'énergie électrique. La règle numéro un de l'optimisation est qu'elle ne doit intervenir qu'une fois que le programme fonctionne et répond aux spécifications fonctionnelles.