Résumé
En théorie des probabilités, on appelle loi normale multidimensionnelle, ou normale multivariée ou loi multinormale ou loi de Gauss à plusieurs variables, la loi de probabilité qui est la généralisation multidimensionnelle de la loi normale. gauche|vignette|Différentes densités de lois normales en un dimension. gauche|vignette|Densité d'une loi gaussienne en 2D. Une loi normale classique est une loi dite « en cloche » en une dimension. Comme le montre la figure, la densité en forme de cloche peut être translatée n'importe où ; l'abscisse où se trouve le pic est la moyenne, aussi appelée centre, ou espérance. Si on fait plusieurs tirages selon une loi normale, on obtient plusieurs nombres réels et la moyenne des valeurs obtenues se situent près du centre. La largeur de la cloche se mesure par la variance. Plus la variance est petite, plus la cloche est resserrée, plus les valeurs tirées auront tendance à être proche de la moyenne. À l'inverse, plus la variance est grande, plus la cloche est large et les valeurs seront plus éparpillées autour de la moyenne. Pour le cas normal, la seule valeur de la variance suffit à caractériser la « largeur » de la cloche. Une loi normale multidimensionnelle reprend le même principe que la loi normale classique mais en plusieurs dimensions, par exemple en deux dimensions. Si on fait des tirages selon une loi normale multidimensionnelle, on obtient des points. On parle de vecteur aléatoire. La deuxième figure montre la densité en forme de cloche en 2D. De la même manière, le point dans le plan où se trouve le pic est la moyenne, centre ou espérance. L'espérance est un point : la figure montre une loi gaussienne de moyenne (50, 50). De la même façon, la cloche peut être plus ou moins large. Comme il y a plusieurs dimensions, la cloche peut être large pour une dimension et étroite pour une autre. Deux coordonnées peuvent aussi être corrélées : par exemple, il peut arriver que si on tire un point et que sa première coordonnée est positive, il y a plus de chances que la deuxième coordonnée soit aussi positive.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.