Extract-transform-loadExtract-transform-load est une technologie informatique intergicielle permettant d'effectuer des synchronisations massives d'information d'une source de données (le plus souvent une base de données) vers une autre. Cette technologie est connue sous le sigle ETL, ou extracto-chargeur. Selon le contexte, il s'agit d'exploiter différentes fonctions, souvent combinées entre elles : « extraction », « transformation », « constitution » ou « conversion », « alimentation » ou « chargement ».
Ontology learningOntology learning (ontology extraction, ontology generation, or ontology acquisition) is the automatic or semi-automatic creation of ontologies, including extracting the corresponding domain's terms and the relationships between the concepts that these terms represent from a corpus of natural language text, and encoding them with an ontology language for easy retrieval. As building ontologies manually is extremely labor-intensive and time-consuming, there is great motivation to automate the process.
Système de positionnement en intérieurUn système de positionnement en intérieur ou système de géolocalisation en intérieur permet de trouver la position d'objets ou de personnes dans un espace interne à une structure (bâtiments, maisons...). La localisation joue un rôle essentiel dans la vie de tous les jours. Alors que la localisation basée sur les GPS est populaire, sa prolifération dans les environnements intérieurs est limitée. Cela est dû à la mauvaise pénétration des signaux GPS à l’intérieur des bâtiments et à l'absence fréquente de systèmes de localisation intérieure.
Multimodal sentiment analysisMultimodal sentiment analysis is a technology for traditional text-based sentiment analysis, which includes modalities such as audio and visual data. It can be bimodal, which includes different combinations of two modalities, or trimodal, which incorporates three modalities. With the extensive amount of social media data available online in different forms such as videos and images, the conventional text-based sentiment analysis has evolved into more complex models of multimodal sentiment analysis, which can be applied in the development of virtual assistants, analysis of YouTube movie reviews, analysis of news videos, and emotion recognition (sometimes known as emotion detection) such as depression monitoring, among others.
Réseau personnelUn réseau personnel ou (Personal Area Network, PAN) désigne un type de réseau informatique restreint en matière d'équipements, généralement mis en œuvre dans un espace d'une dizaine de mètres. D'autres appellations pour ce type de réseau sont : réseau domestique ou réseau individuel. L'idée est d'envoyer des informations entre des périphériques proches. Au lieu de les envoyer via un LAN ou un WLAN nécessitant une infrastructure, une nouvelle classification, PAN est créée.
Micro-casqueUn micro-casque est un équipement intégrant un microphone et un casque audio dans un même appareil, utilisé en informatique, en radiotéléphonie et studio d'enregistrement. Il peut se présenter sous différentes formes : une simple oreillette reliée à un micro une double oreillette sous forme de puce, le micro étant fixé sur le câble d'une de ces deux oreillettes un casque reliant les deux oreillettes (passant sur le dessus ou l'arrière du crâne) muni d'un micro au bout d'une tige En informatique, il est généralement doté de deux prises Jack de : une pour le microphone, une autre pour le casque.
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Qualité des donnéesLa qualité des données, en informatique se réfère à la conformité des données aux usages prévus, dans les modes opératoires, les processus, les prises de décision, et la planification (J.M. Juran). De même, les données sont jugées de grande qualité si elles représentent correctement la réalité à laquelle elles se réfèrent. Ces deux points de vue peuvent souvent entrer en contradiction, y compris lorsqu'un même ensemble de données est utilisé avec un objectif commun.