Système de classeursUn système de classeurs (Learning Classifier System ou LCS en anglais) est un système d'apprentissage automatique utilisant l'apprentissage par renforcement et les algorithmes génétiques. Ils ont été introduits par Holland en 1977 et développé par Goldberg en 1989 Un système de classeurs (aussi appelé classifiers) est composé d'une base de règles, appelée classeur, associés à un poids. Chaque règle est composée d'une partie condition et d'une partie action. Le classeur commence par être initialisé (aléatoirement ou non).
Algorithme espérance-maximisationL'algorithme espérance-maximisation (en anglais expectation-maximization algorithm, souvent abrégé EM) est un algorithme itératif qui permet de trouver les paramètres du maximum de vraisemblance d'un modèle probabiliste lorsque ce dernier dépend de variables latentes non observables. Il a été proposé par Dempster et al. en 1977. De nombreuses variantes ont par la suite été proposées, formant une classe entière d'algorithmes.
Analyse des donnéesL’analyse des données (aussi appelée analyse exploratoire des données ou AED) est une famille de méthodes statistiques dont les principales caractéristiques sont d'être multidimensionnelles et descriptives. Dans l'acception française, la terminologie « analyse des données » désigne donc un sous-ensemble de ce qui est appelé plus généralement la statistique multivariée. Certaines méthodes, pour la plupart géométriques, aident à faire ressortir les relations pouvant exister entre les différentes données et à en tirer une information statistique qui permet de décrire de façon plus succincte les principales informations contenues dans ces données.
Système complexevignette|Visualisation sous forme de graphe d'un réseau social illustrant un système complexe. Un système complexe est un ensemble constitué d'un grand nombre d'entités en interaction dont l'intégration permet d'achever un but commun. Les systèmes complexes sont caractérisés par des propriétés émergentes qui n'existent qu'au niveau du système et ne peuvent pas être observées au niveau de ses constituants. Dans certains cas, un observateur ne peut pas prévoir les rétroactions ou les comportements ou évolutions des systèmes complexes par le calcul, ce qui amène à les étudier à l'aide de la théorie du chaos.
Modèle graphiqueUn modèle graphique est une représentation d'objets probabilistes. C'est un graphe qui représente les dépendances de variables aléatoires. Ces modèles sont notamment utilisés en apprentissage automatique. Un modèle graphique est un graphe orienté ou non orienté, c'est-à-dire un ensemble, les « sommets », et des liens entre les sommets, les « arêtes ». Chaque sommet représente une variable aléatoire et chaque arête représente une dépendance de ces variables. Dans l'exemple ci-contre, il y a 4 variables aléatoires A, B, C et D.
Désambiguïsation lexicaleLa désambiguïsation lexicale ou désambigüisation lexicale est la détermination du sens d'un mot dans une phrase lorsque ce mot peut avoir plusieurs sens possibles. Dans la linguistique informatique, la désambiguïsation lexicale est un problème non résolu dans le traitement des langues naturelles et de l'ontologie informatique. La résolution de ce problème permettrait des avancées importantes dans d'autres champs de la linguistique informatique comme l'analyse du discours, l'amélioration de la pertinence des résultats des moteurs de recherche, la résolution des anaphores, la cohérence, l'inférence, etc.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Science des donnéesLa science des données est l'étude de l’extraction automatisée de connaissance à partir de grands ensembles de données. Plus précisément, la science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées à partir de nombreuses données structurées ou non . Elle est souvent associée aux données massives et à l'analyse des données.
Étiquetage morpho-syntaxiquevignette|C’est une image en language italien En linguistique, l'étiquetage morpho-syntaxique (aussi appelé étiquetage grammatical, POS tagging (part-of-speech tagging) en anglais) est le processus qui consiste à associer aux mots d'un texte les informations grammaticales correspondantes comme la partie du discours, le genre, le nombre, etc. à l'aide d'un outil informatique. Texte original : Nous sommes allées en Bretagne contempler de magnifiques allées couvertes du Néolithique.
Système complexe adaptatifUn système complexe adaptatif ou système complexe auto-adaptatif est l'ensemble des cas particuliers d'un système complexe capable de s'adapter à son environnement par des expériences d'apprentissage. Le terme anglais complex adaptive systems (CAS) a été introduit par l'Institut interdisciplinaire de Santa Fe notamment par John H. Holland et Murray Gell-Mann. En 1962, Vero Copner Wynne-Edwards a observé la sélection de groupe à l’œuvre dans les communautés d’oiseaux sauvages.