Ingénierie des caractéristiquesL'ingénierie des caractéristiques (en anglais feature engineering) a un rôle important, notamment dans l’analyse des données. Sans données, les algorithmes d’exploitation et d’apprentissage automatique de données ne seront pas en mesure de fonctionner. En effet, il s’avère qu’en réalité, on ne pourrait réaliser que peu de choses si nous ne disposions que de très peu de caractéristiques afin de pouvoir représenter les données, ou les banques de données, sous-jacentes.
Feature (machine learning)In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a phenomenon. Choosing informative, discriminating and independent features is a crucial element of effective algorithms in pattern recognition, classification and regression. Features are usually numeric, but structural features such as strings and graphs are used in syntactic pattern recognition. The concept of "feature" is related to that of explanatory variable used in statistical techniques such as linear regression.
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
Reconnaissance automatique de la parolevignette|droite|upright=1.4|La reconnaissance vocale est habituellement traitée dans le middleware ; les résultats sont transmis aux applications utilisatrices. La reconnaissance automatique de la parole (souvent improprement appelée reconnaissance vocale) est une technique informatique qui permet d'analyser la voix humaine captée au moyen d'un microphone pour la transcrire sous la forme d'un texte exploitable par une machine.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Modulation de fréquenceright|Illustration de modulation en amplitude et en fréquence. La modulation de fréquence ou MF (FM en anglais) est un mode de modulation consistant à transmettre un signal par la modulation de la fréquence d'un signal porteur (porteuse). On parle de modulation de fréquence par opposition à la modulation d'amplitude. En modulation de fréquence, l'information est portée par une modification de la fréquence de la porteuse, et non par une variation d'amplitude.
Modulation d'amplitudeLa modulation d'amplitude ou MA (AM en anglais) est une technique utilisée pour moduler un signal. Elle consiste en la multiplication du signal à moduler par un signal de fréquence moins élevée. La modulation d'amplitude consiste à faire varier l'amplitude d'un signal de fréquence élevée, le signal porteur, en fonction d'un signal de plus basse fréquence, le signal modulant. Ce dernier est celui qui contient l'information à transmettre (voix, par exemple, recueillie par un microphone).
Orthogonal frequency-division multiplexingL’OFDM (orthogonal frequency-division multiplexing) est un procédé de codage de signaux numériques par répartition en fréquences orthogonales sous forme de multiples sous-porteuses. Cette technique permet de lutter contre les canaux sélectifs en fréquence en permettant une égalisation de faible complexité. Ces canaux se manifestent notamment en présence de trajets multiples et sont d'autant plus pénalisants que le débit de transmission est élevé.
Modulation du signalEn télécommunications, le signal transportant une information doit passer par un moyen de transmission entre un émetteur et un récepteur. Le signal est rarement adapté à la transmission directe par le canal de communication choisi, hertzien, filaire, ou optique. La modulation peut être définie comme le processus par lequel le signal est transformé de sa forme originale en une forme adaptée au canal de transmission, par exemple en faisant varier les paramètres d'amplitude et d'argument (phase/fréquence) d'une onde sinusoïdale appelée porteuse.