Compound probability distributionIn probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture.
Single-linkage clusteringIn statistics, single-linkage clustering is one of several methods of hierarchical clustering. It is based on grouping clusters in bottom-up fashion (agglomerative clustering), at each step combining two clusters that contain the closest pair of elements not yet belonging to the same cluster as each other. This method tends to produce long thin clusters in which nearby elements of the same cluster have small distances, but elements at opposite ends of a cluster may be much farther from each other than two elements of other clusters.
A priori et a posterioriA priori (ou à priori selon l'orthographe rectifiée de 1990) et a posteriori (ou à postériori) sont un couple de concepts utilisés en philosophie et notamment en philosophie de la connaissance. Une connaissance est a priori lorsqu'elle est indépendante de l'expérience sensible et logiquement antérieure. Emmanuel Kant soutient qu'il s'agit d'une connaissance « indépendante de l'expérience ». A contrario, une connaissance a posteriori est empirique, c'est-à-dire qu'elle est « issu[e] de l'expérience » (Kant).
Correlation clusteringClustering is the problem of partitioning data points into groups based on their similarity. Correlation clustering provides a method for clustering a set of objects into the optimum number of clusters without specifying that number in advance. Cluster analysis In machine learning, correlation clustering or cluster editing operates in a scenario where the relationships between the objects are known instead of the actual representations of the objects.
Réseau bayésienEn informatique et en statistique, un réseau bayésien est un modèle graphique probabiliste représentant un ensemble de variables aléatoires sous la forme d'un graphe orienté acyclique. Intuitivement, un réseau bayésien est à la fois : un modèle de représentation des connaissances ; une « machine à calculer » des probabilités conditionnelles une base pour des systèmes d'aide à la décision Pour un domaine donné (par exemple médical), on décrit les relations causales entre variables d'intérêt par un graphe.
Allocation de Dirichlet latenteDans le domaine du traitement automatique des langues, l’allocation de Dirichlet latente (de l’anglais Latent Dirichlet Allocation) ou LDA est un modèle génératif probabiliste permettant d’expliquer des ensembles d’observations, par le moyen de groupes non observés, eux-mêmes définis par des similarités de données. Par exemple, si les observations () sont les mots collectés dans un ensemble de documents textuels (), le modèle LDA suppose que chaque document () est un mélange () d’un petit nombre de sujets ou thèmes ( topics), et que la génération de chaque occurrence d’un mot () est attribuable (probabilité) à l’un des thèmes () du document.
Dedekind-infinite setIn mathematics, a set A is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset B of A is equinumerous to A. Explicitly, this means that there exists a bijective function from A onto some proper subset B of A. A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers.
Statistique bayésienneLa statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais.
Bayesian probabilityBayesian probability (ˈbeɪziən or ˈbeɪʒən ) is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with hypotheses; that is, with propositions whose truth or falsity is unknown.
Ensemble infiniEn mathématiques, plus précisément en théorie des ensembles, un ensemble infini est un ensemble qui n'est pas fini, c'est-à-dire qu'il n'y a aucun moyen de « compter » les éléments de cet ensemble à l'aide d'un ensemble borné d'entiers. Un ensemble en bijection avec un ensemble infini est donc infini. Tout ensemble contenant un ensemble dénombrable est infini. Dans la théorie de Zermelo (Z), l'axiome de l'infini permet de construire l'ensemble N des entiers naturels, qui est alors un ensemble infini.