Chiffrement par blocvignette|un schéma de chiffrement par bloc Le chiffrement par bloc (en anglais block cipher) est une des deux grandes catégories de chiffrements modernes en cryptographie symétrique, l'autre étant le chiffrement par flot. La principale différence vient du découpage des données en blocs de taille généralement fixe. La taille de bloc est comprise entre 32 et 512 bits. Dans le milieu des années 1990, le standard était de 64 bits. Depuis 2000 et le concours AES, le standard est de 128 bits.
Algèbre linéairevignette|R3 est un espace vectoriel de dimension 3. Droites et plans qui passent par l'origine sont des sous-espaces vectoriels. L’algèbre linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires, formalisation générale des théories des systèmes d'équations linéaires. L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
Sous-espace affine engendréEn géométrie, dans un espace affine , le sous-espace affine engendré par une partie non vide , également dénommé l'enveloppe affine de , est le plus petit sous-espace affine de contenant . Dans un espace affine, l'intersection d'une famille (non vide) de sous-espaces affines est soit l'ensemble vide, soit un sous-espace affine et l'espace lui-même est un sous-espace, ce qui justifie la définition suivante : Soient et des espaces affines et , deux parties non vides de et une partie non vide de .
Fonction courbevignette|La non-linéarité des quatre fonctions booléennes 2-ary avec poids de Hamming 1 Ce sont des fonctions Bent, ainsi que les quatre compléments avec poids de Hamming 3. Ce diagramme montre la Une fonction booléenne avec un nombre pair de variables est dite fonction courbe — bent dans la terminologie anglosaxonne — si sa non-linéarité est maximale. Cela correspond à être à distance maximale — pour la distance de Hamming — de l'ensemble des fonctions booléennes linéaires, encore appelé code de Reed et Müller d'ordre 1.