En géométrie, dans un espace affine , le sous-espace affine engendré par une partie non vide , également dénommé l'enveloppe affine de , est le plus petit sous-espace affine de contenant .
Dans un espace affine, l'intersection d'une famille (non vide) de sous-espaces affines est soit l'ensemble vide, soit un sous-espace affine et l'espace lui-même est un sous-espace, ce qui justifie la définition suivante :
Soient et des espaces affines et , deux parties non vides de et une partie non vide de .
est égal à l'ensemble des barycentres des points de .
Si est une application affine alors .
(dans l'espace affine produit ).
et son enveloppe convexe engendrent le même sous-espace affine.
Pour tout point de , la direction de est le sous-espace vectoriel engendré (dans l'espace vectoriel associé à ) par .
est un opérateur de clôture : , , et .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Sur Convex Optimization couvre l'organisation des cours, les problèmes d'optimisation mathématique, les concepts de solution et les méthodes d'optimisation.
Given a finite number of vectors in a real vector space, a conical combination, conical sum, or weighted sum of these vectors is a vector of the form where are non-negative real numbers. The name derives from the fact that a conical sum of vectors defines a cone (possibly in a lower-dimensional subspace). The set of all conical combinations for a given set S is called the conical hull of S and denoted cone(S) or coni(S). That is, By taking k = 0, it follows the zero vector (origin) belongs to all conical hulls (since the summation becomes an empty sum).
L'enveloppe convexe d'un objet ou d'un regroupement d'objets géométriques est l'ensemble convexe le plus petit parmi ceux qui le contiennent. Dans un plan, l'enveloppe convexe peut être comparée à la région limitée par un élastique qui englobe tous les points qu'on relâche jusqu'à ce qu'il se contracte au maximum. L'idée serait la même dans l'espace avec un ballon qui se dégonflerait jusqu'à être en contact avec tous les points qui sont à la surface de l'enveloppe convexe.
Un objet géométrique est dit convexe lorsque, chaque fois qu'on y prend deux points et , le segment qui les joint y est entièrement contenu. Ainsi un cube plein, un disque ou une boule sont convexes, mais un objet creux ou bosselé ne l'est pas. On suppose travailler dans un contexte où le segment reliant deux points quelconques et a un sens (par exemple dans un espace affine sur R — en particulier dans un espace affine sur C — ou dans un ).
Accurate simulations of molecular quantum dynamics are crucial for understanding numerous natural processes and experimental results. Yet, such high-accuracy simulations are challenging even for relatively simple systems where the Born-Oppenheimer approxim ...
This article investigates the optimal containment control problem for a class of heterogeneous multi-agent systems with time-varying actuator faults and unmatched disturbances based on adaptive dynamic programming. Since there exist unknown input signals i ...
Ehrenfest dynamics is a useful approximation for ab initio mixed quantum-classical molecular dynamics that can treat electronically nonadiabatic effects. Although a severe approximation to the exact solution of the molecular time-dependent Schrödinger equa ...