Tweedie distributionIn probability and statistics, the Tweedie distributions are a family of probability distributions which include the purely continuous normal, gamma and inverse Gaussian distributions, the purely discrete scaled Poisson distribution, and the class of compound Poisson–gamma distributions which have positive mass at zero, but are otherwise continuous. Tweedie distributions are a special case of exponential dispersion models and are often used as distributions for generalized linear models.
Loi de probabilité à plusieurs variablesvignette|Représentation d'une loi normale multivariée. Les courbes rouge et bleue représentent les lois marginales. Les points noirs sont des réalisations de cette distribution à plusieurs variables. Dans certains problèmes interviennent simultanément plusieurs variables aléatoires. Mis à part les cas particuliers de variables indépendantes (notion définie ci-dessous) et de variables liées fonctionnellement, cela introduit la notion de loi de probabilité à plusieurs variables autrement appelée loi jointe.
Rank–size distributionRank–size distribution is the distribution of size by rank, in decreasing order of size. For example, if a data set consists of items of sizes 5, 100, 5, and 8, the rank-size distribution is 100, 8, 5, 5 (ranks 1 through 4). This is also known as the rank–frequency distribution, when the source data are from a frequency distribution. These are particularly of interest when the data vary significantly in scales, such as city size or word frequency.
Fat-tailed distributionA fat-tailed distribution is a probability distribution that exhibits a large skewness or kurtosis, relative to that of either a normal distribution or an exponential distribution. In common usage, the terms fat-tailed and heavy-tailed are sometimes synonymous; fat-tailed is sometimes also defined as a subset of heavy-tailed. Different research communities favor one or the other largely for historical reasons, and may have differences in the precise definition of either.
Loi log-normaleEn théorie des probabilités et statistique, une variable aléatoire X est dite suivre une loi log-normale de paramètres et si la variable suit une loi normale d'espérance et de variance . Cette loi est parfois appelée loi de Galton. Elle est habituellement notée dans le cas d'une seule variable ou dans un contexte multidimensionnel. Une variable peut être modélisée par une loi log-normale si elle est le résultat de la multiplication d'un grand nombre de petits facteurs indépendants.
Conditional probability distributionIn probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability.
Nombre de sujets nécessairesEn statistique, la détermination du nombre de sujets nécessaires est l'acte de choisir le nombre d'observations ou de répétitions à inclure dans un échantillon statistique. Ce choix est très important pour pouvoir faire de l'inférence sur une population. En pratique, la taille de l'échantillon utilisé dans une étude est déterminée en fonction du coût de la collecte des données et de la nécessité d'avoir une puissance statistique suffisante.
Criticité auto-organiséethumb|Une image 2D du tas de sable de Bak-Tang-Wiesenfeld, le modèle original de la criticité auto-organisée.|300px La criticité auto-organisée est une propriété des systèmes dynamiques qui ont un point critique comme attracteur. Leur comportement macroscopique présente alors l'invariance d'échelle spatiale ou temporelle d'un point critique d'une transition de phase, mais sans la nécessité de calibrer les paramètres de contrôle sur une valeur précise, car le système se calibre lui-même en évoluant vers la criticité.
Loi de ZipfLa loi de Zipf est une observation empirique concernant la fréquence des mots dans un texte. Elle a pris le nom de son auteur, George Kingsley Zipf (1902-1950). Cette loi a d'abord été formulée par Jean-Baptiste Estoup et a été par la suite démontrée à partir de formules de Shannon par Benoît Mandelbrot. Elle est parfois utilisée en dehors de ce contexte, par exemple au sujet de la taille et du nombre des villes dans chaque pays, lorsque cette loi semble mieux répondre aux chiffres que la distribution de Pareto.
Phénomène critiquevignette|Point critique de l'éthane : 1. état subcritique, liquide et gaz ; 2. opalescence critique ; 3. fluide supercritique. En physique, un phénomène critique est un phénomène associé à une transition de phase du deuxième ordre d'un système thermodynamique. Par exemple la transition de phase ferromagnétique et le comportement au voisinage du point critique liquide-gaz. La plupart des phénomènes critiques proviennent d'une divergence de la ou d'un ralentissement de la dynamique.