Icosaèdre tronquéLicosaèdre tronqué est un solide d'Archimède. Il comprend 12 faces pentagonales régulières, 20 faces hexagonales régulières, 60 sommets et 90 arêtes. Ce polyèdre peut être construit à partir d'un icosaèdre (solide formé de 20 faces triangulaires régulières) avec une troncature des 12 sommets telle qu'un tiers de chaque arête est enlevé à chaque extrémité. Ceci crée 12 nouvelles faces pentagonales, et remplace les 20 faces triangulaires d'origine par des hexagones réguliers.
Energy policy of the United KingdomThe energy policy of the United Kingdom refers to the United Kingdom's efforts towards reducing energy intensity, reducing energy poverty, and maintaining energy supply reliability. The United Kingdom has had success in this, though energy intensity remains high. There is an ambitious goal to reduce carbon dioxide emissions in future years, but it is unclear whether the programmes in place are sufficient to achieve this objective.
Area of a circleIn geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter pi represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159. One method of deriving this formula, which originated with Archimedes, involves viewing the circle as the limit of a sequence of regular polygons with an increasing number of sides.
Renewable energy commercializationRenewable energy commercialization involves the deployment of three generations of renewable energy technologies dating back more than 100 years. First-generation technologies, which are already mature and economically competitive, include biomass, hydroelectricity, geothermal power and heat. Second-generation technologies are market-ready and are being deployed at the present time; they include solar heating, photovoltaics, wind power, solar thermal power stations, and modern forms of bioenergy.
Circle groupIn mathematics, the circle group, denoted by or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers The circle group forms a subgroup of , the multiplicative group of all nonzero complex numbers. Since is abelian, it follows that is as well. A unit complex number in the circle group represents a rotation of the complex plane about the origin and can be parametrized by the angle measure : This is the exponential map for the circle group.
CapsideChez un virus, la capside est la structure qui entoure le génome, l'acide nucléique (ADN ou ARN). Elle est constituée de très nombreuses unités protéiques qui se regroupent pour former des ensembles structurels identiques appelés capsomères. Le nucléocapside est l'ensemble formé de la capside du virus (présente chez les virus nus ou enveloppés, l'enveloppe ou péplos n'étant pas la capside, mais une enveloppe lipoprotéique entourant la capside) et du génome viral (ARN ou ADN).
Intersection coniquethumb|Intersection conique idéale entre deux surfaces d'énergie potentielle. Les axes horizontaux représentent les positions nucléaires, l'axe vertical est l'énergie des deux états possibles. En chimie quantique, une intersection conique de deux surfaces d'énergie potentielle (SEP) de mêmes symétries spatiales et de spin est l'ensemble des points géométriques où deux SEP sont dégénérées (se croisent). Les intersections coniques se rencontrent dans tous les systèmes chimiques triviaux et non triviaux.
Mécanique hamiltonienneLa mécanique hamiltonienne est une reformulation de la mécanique newtonienne. Son formalisme a facilité l'élaboration théorique de la mécanique quantique. Elle a été formulée par William Rowan Hamilton en 1833 à partir des équations de Lagrange, qui reformulaient déjà la mécanique classique en 1788. En mécanique lagrangienne, les équations du mouvement d'un système à N degrés de liberté dépendent des coordonnées généralisées et des vitesses correspondantes , où .
Quasi-cristalUn quasi-cristal est un solide qui possède un spectre de diffraction essentiellement discret (comme les cristaux classiques) mais dont la structure n'est pas périodique (alors que les cristaux classiques sont périodiques). Découverts en , les quasi-cristaux ont mis fin à une certitude qui durait depuis deux siècles, restreignant la notion d'ordre à celle de périodicité. En 1992, l'Union internationale de cristallographie a modifié la définition d'un cristal pour englober celle d'un quasi-cristal, en ne retenant que le critère de diffraction essentiellement discrète.
Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.