Magnitude de momentL'échelle de magnitude de moment est une des échelles logarithmiques qui mesurent la magnitude d'un séisme, c'est-à-dire la « taille » d'un séisme proportionnelle à l'énergie sismique dégagée. Centrée sur les basses fréquences des ondes sismiques, elle quantifie précisément l'énergie émise par le séisme. Elle ne présente pas de saturation pour les plus grands événements, dont la magnitude peut être sous-évaluée par d'autres échelles, faussant ainsi les dispositifs d'alerte rapide essentiels pour la protection des populations.
Échelle de Richtervignette|droite|Représentation d'une onde sismique. Historiquement, l'échelle de Richter a été l'une des premières tentatives d'évaluer numériquement l'intensité des tremblements de terre, grâce à la magnitude de Richter qui mesure l'énergie sismique radiée (énergie des ondes sismiques) lors du séisme. Imprécise et dépassée, elle a depuis été remplacée par des échelles plus précises permettant de mesurer la magnitude des séismes. L'éponyme de l’échelle de Richter est le sismologue américain Charles Francis Richter (-) qui l'a proposée en .
Billard (mathématiques)Un billard mathématique est un système dynamique dans lequel une particule alterne des mouvements libres sur une surface et des rebonds sur une paroi, sans perte de vitesse. L'angle de rebond est identique à l'angle d'incidence au moment de choc. Ces systèmes dynamiques sont des idéalisations hamiltoniennes du jeu de billard, mais où le domaine encadré par la frontière peut avoir d'autres formes qu'un rectangle et même être multidimensionnel. Les billards dynamiques peuvent aussi être étudiés sur des géométries non euclidiennes.
Système dynamique mesuréUn système dynamique mesuré est un objet mathématique, représentant un espace de phases muni d'une loi d'évolution, particulièrement étudié en théorie ergodique. Un système dynamique mesuré est la donnée d'un espace probabilisé et d'une application mesurable f : X → X. On exige que f préserve la mesure, ce qui veut dire que : Cette propriété très riche permet d'obtenir de puissants théorèmes. Par ailleurs, un théorème affirme qu'il existe, pour toute transformation continue X → X d'un espace topologique compact X, une mesure de probabilité, borélienne, préservant cette transformation.
Théorie du champ moyen dynamiqueLa théorie du champ moyen dynamique (DMFT) est une méthode utilisée pour déterminer la structure électronique de systèmes fortement corrélés. Dans ces systèmes, les fortes corrélations électron-électron rendent impossible le traitement de chaque électron comme une particule indépendante agissant dans un potentiel effectif, comme c'est usuellement le cas dans des calculs de structure de bandes conventionnels comme en théorie de la fonctionnelle de la densité.
Échelle de Mercallivignette|La ville chilienne de Valdivia après le tremblement de terre de 1960, le plus important jamais enregistré (9,5 MW). Il a atteint une intensité de XII sur l'échelle de Mercalli. L'échelle de Mercalli est une échelle de mesure de l'intensité d'un séisme, qui se fonde sur l'observation des effets et des conséquences du séisme en un lieu donné. Il est important de distinguer l'intensité d'un séisme de sa magnitude, laquelle mesure l'énergie libérée par le séisme à son foyer.
OptiqueL'optique est la branche de la physique qui traite de la lumière, de son comportement et de ses propriétés, du rayonnement électromagnétique à la vision en passant par les systèmes utilisant ou émettant de la lumière. Du fait de ses propriétés ondulatoires, le domaine de la lumière peut couvrir le lointain UV jusqu'au lointain IR en passant par les longueurs d'onde visibles. Ces propriétés recouvrent alors le domaine des ondes radio, micro-ondes, des rayons X et des radiations électromagnétiques.
Magnitude (sismologie)vignette|Sismogramme enregistré par un sismographe à l'Observatoire Weston dans le Massachusetts, aux États-Unis. En sismologie, la magnitude est la représentation logarithmique du moment sismique, qui est lui-même une mesure de l'énergie libérée par un séisme déduite de l'amplitude de certaines ondes sismiques à des distances spécifiques (mesure de l'amplitude sur un sismogramme de l'onde P ou S). Plus le séisme a libéré d'énergie, plus la magnitude est élevée : un accroissement de magnitude de 1 correspond à une multiplication par 30 de l'énergie et par 10 de l'amplitude du mouvement.
Spectrométrie d'absorptionLa spectrométrie d'absorption est une méthode de spectroscopie électromagnétique utilisée pour déterminer la concentration et la structure d'une substance en mesurant l'intensité du rayonnement électromagnétique qu'elle absorbe à des longueurs d'onde différentes. La spectroscopie d'absorption peut être atomique ou moléculaire. Comme indiqué dans le tableau précédent, les rayonnements électromagnétiques exploités en spectroscopie d'absorption moléculaire vont de l'ultraviolet jusqu'aux ondes radio : La couleur d'un corps en transmission (transparence) représente sa capacité à absorber certaines longueurs d'onde.
Compound Poisson distributionIn probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution. Suppose that i.e., N is a random variable whose distribution is a Poisson distribution with expected value λ, and that are identically distributed random variables that are mutually independent and also independent of N.