Publication

An Improved LP-based Approximation for Steiner Tree

Thomas Rothvoss, Laura Sanità
2010
Article de conférence
Résumé

The Steiner tree problem is one of the most fundamental NP\mathbf{NP}-hard problems: given a weighted undirected graph and a subset of terminal nodes, find a minimum-cost tree spanning the terminals. In a sequence of papers, the approximation ratio for this problem was improved from 22 to the current best 1.551.55 [Robins,Zelikovsky-SIDMA'05]. All these algorithms are purely combinatorial. A long-standing open problem is whether there is an LP-relaxation for Steiner tree with integrality gap smaller than 22 [Vazirani,Rajagopalan-SODA'99]. In this paper we improve the approximation factor for Steiner tree, developing an LP-based approximation algorithm. Our algorithm is based on a, seemingly novel, \emph{iterative randomized rounding} technique. We consider a directed-component cut relaxation for the kk-restricted Steiner tree problem. We sample one of these components with probability proportional to the value of the associated variable in the optimal fractional solution and contract it. We iterate this process for a proper number of times and finally output the sampled components together with a minimum-cost terminal spanning tree in the remaining graph. Our algorithm delivers a solution of cost at most ln(4)\ln(4) times the cost of an optimal kk-restricted Steiner tree. This directly implies a $\ln(4)+\varepsilon

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.