Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Réseau de neurones à impulsionsLes réseaux de neurones à impulsions (SNNs : Spiking Neural Networks, en anglais) sont un raffinement des réseaux de neurones artificiels (ANNs : Artificial Neural Networks, en anglais) où l’échange entre neurones repose sur l’intégration des impulsions et la redescente de l’activation, à l’instar des neurones naturels. L’encodage est donc temporel et binaire. Le caractère binaire pose une difficulté de continuité au sens mathématique (cela empêche notamment l’utilisation des techniques de rétropropagation des coefficients - telle que la descente de gradient - utilisées classiquement dans les méthodes d'apprentissage).
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Mémoire spatialevignette|La mémoire spatiale est nécessaire pour naviguer dans un environnement. La mémoire spatiale est la partie de la mémoire d'un individu responsable de l'enregistrement des informations concernant l'espace environnant et l'orientation spatiale de l'individu dans celui-ci. La mémoire spatiale est ainsi requise pour la navigation spatiale dans un lieu connu, comme dans un quartier familier. Elle est étudiée en neuroscience (chez le rat) et en psychologie cognitive (chez l'homme).
Physical neural networkA physical neural network is a type of artificial neural network in which an electrically adjustable material is used to emulate the function of a neural synapse or a higher-order (dendritic) neuron model. "Physical" neural network is used to emphasize the reliance on physical hardware used to emulate neurons as opposed to software-based approaches. More generally the term is applicable to other artificial neural networks in which a memristor or other electrically adjustable resistance material is used to emulate a neural synapse.
Architecture cognitiveUne architecture cognitive est un processus calculatoire artificiel qui tente de simuler le comportement d'un système cognitif (généralement celui d'un humain), ou qui agit intelligemment sous respect d'une certaine définition. Le terme architecture implique une approche qui tente de modéliser les propriétés internes du système cognitif représenté et non seulement le comportement extérieur. Les prochaines sous-sections présentent plusieurs critères pour catégoriser les architectures cognitives.
Cognitive mapA cognitive map is a type of mental representation which serves an individual to acquire, code, store, recall, and decode information about the relative locations and attributes of phenomena in their everyday or metaphorical spatial environment. The concept was introduced by Edward Tolman in 1948. He tried to explain the behavior of rats that appeared to learn the spatial layout of a maze, and subsequently the concept was applied to other animals, including humans.
Plasticité neuronalevignette|Effets schématiques de la neuroplasticité après entraînement Plasticité neuronale, neuroplasticité ou encore plasticité cérébrale sont des termes génériques qui décrivent les mécanismes par lesquels le cerveau est capable de se modifier lors des processus de neurogenèse dès la phase embryonnaire ou lors d'apprentissages. Elle s’exprime par la capacité du cerveau de créer, défaire ou réorganiser les réseaux de neurones et les connexions de ces neurones. Le cerveau est ainsi qualifié de « plastique » ou de « malléable ».
Intelligence animalethumb|right|300px|Une comparaison du cerveau de différents mammifères. « Intelligence animale » est une expression renvoyant aux capacités cognitives des animaux et à leur étude. Le sujet a donné lieu à de nombreux travaux dont les résultats offrent non seulement une meilleure compréhension du monde animal mais aussi, par extension, des pistes pour l’étude de l'intelligence humaine. Différents groupes d'espèces se démarquent par leurs aptitudes intellectuelles lors des recherches sur l'éthologie cognitive.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.