Nœud (lien)vignette|upright=1.4|Nœuds dans "Nordisk familjebok", 1911: 1. Épissure 2. Nœud de tire-veille 3. Nœud en queue de cochon 4. Wall and crown knot 5. Nœud de ride 6. Nœud de hauban 7. Bonnet turc 8. Demi-nœud, Nœud en huit 9. Nœud plat 10. Nœud de grappin vignette|upright=1.4|Nœuds dans "Le Larousse pour tous", 1909. Un nœud est l'enlacement ou l'entrecroisement d'une ou de plusieurs cordes, ou tout autres objets flexibles et de forme filaire (comme un fil, une sangle, un câble, un ruban).
Nœud (mathématiques)En mathématiques, et plus particulièrement en géométrie et en topologie algébrique, un nœud est un plongement d'un cercle dans R, l'espace euclidien de dimension 3, considéré à des déformations continues près. Une différence essentielle entre les nœuds usuels et les nœuds mathématiques est que ces derniers sont fermés (sans extrémités permettant de les nouer ou de les dénouer) ; les propriétés physiques des nœuds réels, telles que la friction ou l'épaisseur des cordes, sont généralement également négligées.
Théorie des nœudsthumb|right|Représentation d’un nœud torique de type (3, 8). La théorie des nœuds est une branche de la topologie qui consiste en l'étude mathématique de courbes présentant des liaisons avec elles-mêmes, un « bout de ficelle » idéalisé en lacets. Elle est donc très proche de la théorie des tresses qui comporte plusieurs chemins ou « bouts de ficelle ». left|thumb|Nœuds triviaux La théorie des nœuds a commencé vers 1860 et avec des travaux de Carl Friedrich Gauss liés à l'électromagnétisme.