Nœud (lien)vignette|upright=1.4|Nœuds dans "Nordisk familjebok", 1911: 1. Épissure 2. Nœud de tire-veille 3. Nœud en queue de cochon 4. Wall and crown knot 5. Nœud de ride 6. Nœud de hauban 7. Bonnet turc 8. Demi-nœud, Nœud en huit 9. Nœud plat 10. Nœud de grappin vignette|upright=1.4|Nœuds dans "Le Larousse pour tous", 1909. Un nœud est l'enlacement ou l'entrecroisement d'une ou de plusieurs cordes, ou tout autres objets flexibles et de forme filaire (comme un fil, une sangle, un câble, un ruban).
Nœud (mathématiques)En mathématiques, et plus particulièrement en géométrie et en topologie algébrique, un nœud est un plongement d'un cercle dans R, l'espace euclidien de dimension 3, considéré à des déformations continues près. Une différence essentielle entre les nœuds usuels et les nœuds mathématiques est que ces derniers sont fermés (sans extrémités permettant de les nouer ou de les dénouer) ; les propriétés physiques des nœuds réels, telles que la friction ou l'épaisseur des cordes, sont généralement également négligées.
Théorie des nœudsthumb|right|Représentation d’un nœud torique de type (3, 8). La théorie des nœuds est une branche de la topologie qui consiste en l'étude mathématique de courbes présentant des liaisons avec elles-mêmes, un « bout de ficelle » idéalisé en lacets. Elle est donc très proche de la théorie des tresses qui comporte plusieurs chemins ou « bouts de ficelle ». left|thumb|Nœuds triviaux La théorie des nœuds a commencé vers 1860 et avec des travaux de Carl Friedrich Gauss liés à l'électromagnétisme.
Carte géographiquethumb|right|Esquisse explicative de la plus ancienne carte géographique connue (époque sumérienne, env. 2500 av. J.-C.) vignette|250px|Carte mondiale datant de 1154 réalisée par Al Idrissi pour Roger II de Sicile (ici retournée à ). thumb|right|upright=1.3|Tabula Rogeriana, dessiné par Muhammad al-Idrisi pour Roger II de Sicile (ici retournée à ). Une carte géographique est une représentation d'un espace géographique. Elle met en valeur l'étendue de cet espace, sa localisation relative par rapport aux espaces voisins, ainsi que la localisation des éléments qu'il contient.
Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Boucle forEn informatique, la boucle for est une structure de contrôle de programmation qui permet de répéter l'exécution d'une séquence d'instructions. Selon les langages de programmation, différents mots-clés sont utilisés pour signaler cette structure de contrôle : for pour les descendants d'Algol, do pour FORTRAN, PL/I, etc. Une "boucle for" a deux parties : une entête qui spécifie la manière de faire l'itération, et un corps qui est exécuté à chaque itération. Dans cette forme de boucle, une variable prend des valeurs successives sur un intervalle.
Foreach loopIn computer programming, foreach loop (or for-each loop) is a control flow statement for traversing items in a collection. is usually used in place of a standard loop statement. Unlike other loop constructs, however, loops usually maintain no explicit counter: they essentially say "do this to everything in this set", rather than "do this times". This avoids potential off-by-one errors and makes code simpler to read. In object-oriented languages, an iterator, even if implicit, is often used as the means of traversal.
PlanisphèreUn planisphère est une représentation plane de la surface du globe terrestre. La sphère étant une surface courbe, les formes et les tailles des continents, mers, pays, etc ne pourront pas être préservés. Le terme mappemonde est, dans son sens strict, une carte représentant toutes les parties du globe terrestre divisé en deux hémisphères enfermés chacun dans un grand cercle. La création d’un planisphère demande des informations générales sur la planète, notamment les formes et positions relatives des océans ou des continents.
Applications ouvertes et ferméesEn mathématiques, et plus précisément en topologie, une application ouverte est une application entre deux espaces topologiques envoyant les ouverts de l'un vers des ouverts de l'autre. De même, une application fermée envoie les fermés du premier espace vers des fermés du second. Soit deux espaces topologiques X et Y ; on dit qu'une application f de X vers Y est ouverte si pour tout ouvert U de X, l' f(U) est ouverte dans Y ; de même, on dit que f est fermée si pour tout fermé U de X, l'image f(U) est fermée dans Y.