Styles d'apprentissageLes styles d’apprentissage constituent une gamme de théories concurrentes et contestées qui, à partir d’un concept commun selon lequel les apprenants diffèreraient dans la façon d’acquérir leur connaissances, vise à tenir compte desdites différences d’acquisition supposées chez les apprenants. Bien que ces diverses théories divergent dans leurs vues sur la façon dont lesdits styles doivent être définis et classés, ces théories suggèrent que tous les apprenants pourraient être étiquetés en fonction d’un « style » d’apprentissage particulier comme « visuel », « auditif », « kinesthésique », « tactile », etc.
Compact convergenceIn mathematics compact convergence (or uniform convergence on compact sets) is a type of convergence that generalizes the idea of uniform convergence. It is associated with the compact-open topology. Let be a topological space and be a metric space. A sequence of functions is said to converge compactly as to some function if, for every compact set , uniformly on as . This means that for all compact , If and with their usual topologies, with , then converges compactly to the constant function with value 0, but not uniformly.
Dorsale (réseau)vignette|Carte de la dorsale internet des Etats-Unis en 1992 Une dorsale (), aussi appelée cœur de réseau, est le nom de l'interconnexion haut débit entre sous-réseaux qui permet le transit des informations au sein d'un réseau informatique étendu. La dorsale est un élément-clé qui doit être convenablement structuré et dimensionné afin de limiter des effets indésirables tels que la congestion. Dans un réseau, une dorsale peut relier des sous-réseaux correspondant à différentes parties d'un bâtiment, différents bâtiments d'un site voire différents sites d'une implantation.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Réseau privé virtuelthumb|upright=1.8|Principe d'un VPN simple En informatique, un réseau privé virtuel (RPV) ou réseau virtuel privé (RVP), plus communément abrégé en VPN (de l'virtual private network), est un système permettant de créer un lien direct entre des ordinateurs distants, qui isole leurs échanges du reste du trafic se déroulant sur des réseaux de télécommunication publics. On utilise notamment ce terme dans le télétravail, ainsi que dans le cadre de l'informatique en nuage.
Apprentissage auto-superviséL'apprentissage auto-supervisé ("self-supervised learning" en anglais) (SSL) est une méthode d'apprentissage automatique. Il apprend à partir d'échantillons de données non étiquetés. Il peut être considéré comme une forme intermédiaire entre l'apprentissage supervisé et non supervisé. Il est basé sur un réseau de neurones artificiels. Le réseau de neurones apprend en deux étapes. Tout d'abord, la tâche est résolue sur la base de pseudo-étiquettes qui aident à initialiser les poids du réseau.
Modèle linéaire généraliséEn statistiques, le modèle linéaire généralisé (MLG) souvent connu sous les initiales anglaises GLM est une généralisation souple de la régression linéaire. Le GLM généralise la régression linéaire en permettant au modèle linéaire d'être relié à la variable réponse via une fonction lien et en autorisant l'amplitude de la variance de chaque mesure d'être une fonction de sa valeur prévue, en fonction de la loi choisie.
Méthode des k plus proches voisinsEn intelligence artificielle, plus précisément en apprentissage automatique, la méthode des k plus proches voisins est une méthode d’apprentissage supervisé. En abrégé KPPV ou k-PPV en français, ou plus fréquemment k-NN ou KNN, de l'anglais k-nearest neighbors. Dans ce cadre, on dispose d’une base de données d'apprentissage constituée de N couples « entrée-sortie ». Pour estimer la sortie associée à une nouvelle entrée x, la méthode des k plus proches voisins consiste à prendre en compte (de façon identique) les k échantillons d'apprentissage dont l’entrée est la plus proche de la nouvelle entrée x, selon une distance à définir.
Gaz neuronalLe gaz neuronal est un réseau de neurones artificiel, inspiré des cartes autoadaptatives, et introduites en 1991 par Thomas Martinetz et Klaus Schulten. Le gaz neuronal est un algorithme simple pour trouver une représentation optimale de données à partir de vecteurs principaux. La méthode fut appelée "gaz neuronal" parce que l'évolution des vecteurs principaux durant l'étape d'apprentissage fait penser à un gaz qui occupe un espace de façon uniforme.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.