Microscopie à super-résolutionLa microscopie à super-résolution est un ensemble de techniques permettant d'imager en microscopie optique des objets à une résolution à l’échelle nanométrique. Elle se démarque par le fait que la résolution obtenue n'est plus limitée par le phénomène de diffraction. Du fait de la diffraction de la lumière, la résolution d’un microscope optique conventionnel est en principe limitée, indépendamment du capteur utilisé et des aberrations ou imperfections des lentilles.
MicroscopieLa microscopie est un ensemble de techniques d' des objets de petites dimensions. Quelle que soit la technique employée, l'appareil utilisé pour rendre possible cette observation est appelé un . Des mots grecs anciens mikros et skopein signifiant respectivement « petit » et « examiner », la microscopie désigne étymologiquement l'observation d'objets invisibles à l'œil nu. On distingue principalement trois types de microscopies : la microscopie optique, la microscopie électronique et la microscopie à sonde locale.
Microscope confocalvignette|upright=2|Schéma de principe du microscope confocal par Marvin Minsky en 1957. vignette|upright=1.5|Principe de fonctionnement du microscope à fluorescence puis du microscope confocal. Un microscope confocal, appelé plus rarement microscope monofocal, est un microscope optique qui a la propriété de réaliser des images de très faible profondeur de champ (environ ) appelées « sections optiques ».
Nombre complexeEn mathématiques, l'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i tel que i = −1. Le carré de (−i) est aussi égal à −1 : (−i) = −1. Tout nombre complexe peut s'écrire sous la forme x + i y où x et y sont des nombres réels. Les nombres complexes ont été progressivement introduit au par l’école mathématique italienne (Jérôme Cardan, Raphaël Bombelli, Tartaglia) afin d'exprimer les solutions des équations du troisième degré en toute généralité par les formules de Cardan, en utilisant notamment des « nombres » de carré négatif.
OptiqueL'optique est la branche de la physique qui traite de la lumière, de son comportement et de ses propriétés, du rayonnement électromagnétique à la vision en passant par les systèmes utilisant ou émettant de la lumière. Du fait de ses propriétés ondulatoires, le domaine de la lumière peut couvrir le lointain UV jusqu'au lointain IR en passant par les longueurs d'onde visibles. Ces propriétés recouvrent alors le domaine des ondes radio, micro-ondes, des rayons X et des radiations électromagnétiques.
Microscope optiqueLe microscope optique ou microscope photonique est un instrument d'optique muni d'un objectif et d'un oculaire qui permet de grossir l'image d'un objet de petites dimensions (ce qui caractérise sa puissance optique) et de séparer les détails de cette image (et son pouvoir de résolution) afin qu'il soit observable par l'œil humain. Il est utilisé en biologie, pour observer les cellules, les tissus, en pétrographie pour reconnaître les roches, en métallurgie et en métallographie pour examiner la structure d'un métal ou d'un alliage.
DéconvolutionEn mathématiques, la déconvolution est un procédé algorithmique destiné à inverser les effets de la convolution. Le concept de déconvolution est largement utilisé en traitement du signal et , notamment en microscopie et astronomie. Le problème est de déterminer la solution f d'une équation de la forme : On note ici par h un signal tel qu'il est acquis et f le signal que l'on désire estimer ou restaurer, mais qui a été convolué par une réponse impulsionnelle g lors de l'acquisition.
Géométrie complexeIn mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.
Super-résolutionEn traitement du signal et en , la super-résolution désigne le processus qui consiste à améliorer la résolution spatiale, c'est-à-dire le niveau de détail, d'une image ou d'un système d'acquisition. Cela regroupe des méthodes matérielles qui visent à contourner les problèmes optiques et autres difficultés physiques rencontrées lors de l'acquisition d'image, ainsi que des techniques algorithmiques qui, à partir d'une ou de plusieurs images déjà capturées, créent une image de meilleure résolution.
Objet initial et objet finalEn mathématiques, et plus particulièrement en théorie des catégories, un objet initial et un objet final sont des objets qui permettent de définir une propriété universelle. Donnons-nous une catégorie . Un objet de est dit initial si pour tout objet de , il existe une et une seule flèche de vers . De même, un objet est dit final (ou terminal) si pour tout objet , il existe une et une seule flèche de vers . En particulier, la seule flèche d'un objet initial (ou final) vers lui-même est l'identité.