Polytope régulierdroite|vignette|Le dodécaèdre régulier, un des cinq solides platoniciens. En mathématiques, plus précisément en géométrie ou encore en géométrie euclidienne, un polytope régulier est une figure de géométrie présentant un grand nombre de symétries. En dimension deux, on trouve par exemple le triangle équilatéral, le carré, les pentagone et hexagone réguliers, etc. En dimension trois se rangent parmi les polytopes réguliers le cube, le dodécaèdre régulier (ci-contre), tous les solides platoniciens.
AnyonEn physique quantique, un anyon est un type de particule propre aux systèmes à deux dimensions. Ni boson ni fermion, l'anyon en est une généralisation. Prédits et théorisés depuis plus de quatre décennies, les premières preuves expérimentales de l'existence des anyons ne datent que de 2020. Le concept d'anyon est utile lorsqu’on s’intéresse à un système à deux dimensions tel que le graphène ou l’.
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-KibbleEn physique des particules le mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble (BEHHGK, prononcé « Beck »), souvent abrégé (au détriment de certains auteurs) mécanisme de Brout-Englert-Higgs, voire mécanisme de Higgs, introduit indépendamment par François Englert et Robert Brout, par Peter Higgs, et par Gerald Guralnik, Carl Richard Hagen et Thomas Kibble en 1964, décrit un processus par lequel une symétrie locale de la théorie peut être brisée spontanément, en introduisant un champ scalaire de valeur
Particule de MajoranaEn physique des particules, une particule de Majorana ou fermion de Majorana est un fermion qui est sa propre antiparticule. Ces particules sont nommées en hommage au physicien Ettore Majorana, qui a proposé ce modèle en établissant l'équation qui porte son nom. Ce terme est parfois utilisé en opposition aux particules de Dirac (ou fermions de Dirac) qui ont une antiparticule différente d'elles-mêmes. En 1928, Paul Dirac publie l'article qui contient l'équation de Dirac.
Mathematical formulation of the Standard ModelThis article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson. The Standard Model is renormalizable and mathematically self-consistent, however despite having huge and continued successes in providing experimental predictions it does leave some unexplained phenomena.
Space (mathematics)In mathematics, a space is a set (sometimes called a universe) with some added structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself. A space consists of selected mathematical objects that are treated as points, and selected relationships between these points. The nature of the points can vary widely: for example, the points can be elements of a set, functions on another space, or subspaces of another space.
Compactification (physics)In theoretical physics, compactification means changing a theory with respect to one of its space-time dimensions. Instead of having a theory with this dimension being infinite, one changes the theory so that this dimension has a finite length, and may also be periodic. Compactification plays an important part in thermal field theory where one compactifies time, in string theory where one compactifies the extra dimensions of the theory, and in two- or one-dimensional solid state physics, where one considers a system which is limited in one of the three usual spatial dimensions.
Confinement de couleurLe confinement de couleur (ou simplement confinement) est une propriété des particules élémentaires possédant une charge de couleur : ces particules ne peuvent être isolées et sont observées uniquement avec d'autres particules de telle sorte que la combinaison formée soit blanche, c’est-à-dire que sa charge de couleur totale soit nulle. Cette propriété est à l'origine de l'existence des hadrons. Le phénomène est décrit dans le cadre de la chromodynamique quantique (ou CDQ, QCD en anglais).
Five-dimensional spaceA five-dimensional space is a space with five dimensions. In mathematics, a sequence of N numbers can represent a location in an N-dimensional space. If interpreted physically, that is one more than the usual three spatial dimensions and the fourth dimension of time used in relativistic physics. Whether or not the universe is five-dimensional is a topic of debate. Much of the early work on five-dimensional space was in an attempt to develop a theory that unifies the four fundamental interactions in nature: strong and weak nuclear forces, gravity and electromagnetism.