Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
Constante de couplageEn physique, une constante de couplage est un nombre caractéristique de l'intensité d'une interaction. En physique classique les constantes de couplage interviennent en mécanique et en électromagnétisme : la constante de couplage de deux circuits linéaires, comme l'inductance mutuelle M d'un transformateur. Voir aussi l'article Couplage de deux oscillateurs électriques ; la constante de couplage de deux systèmes mécaniques, souvent notée k, caractérise leur dépendance l'un à l'autre.
Supergravitévignette|Vue d'artiste de la sonde gravitationnelle B en orbite autour de la Terre pour mesurer l'espace-temps, une description quadridimensionnelle de l'univers comprenant la hauteur, la largeur, la longueur et le temps. En physique théorique, une théorie de la supergravité est une théorie du champ de Maxwell qui combine la supersymétrie et la relativité générale. Les théories de supergravité possèdent une super-symétrie locale, c'est-à-dire qu'elles sont invariantes par une transformation de supersymétrie dont les paramètres dépendent de la position dans l'espace.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Grande unificationEn physique théorique, une théorie de grande unification, encore appelée GUT (pour Grand Unified Theory en anglais) est un modèle de la physique des particules dans lequel les trois interactions de jauge du modèle standard (électromagnétique, nucléaire faible et nucléaire forte) se fusionnent en une seule à hautes énergies. Cette interaction unifiée est caractérisée par une symétrie de jauge plus grande et donc plusieurs vecteurs de force, mais une seule constante de couplage unifiée.
Landau poleIn physics, the Landau pole (or the Moscow zero, or the Landau ghost) is the momentum (or energy) scale at which the coupling constant (interaction strength) of a quantum field theory becomes infinite. Such a possibility was pointed out by the physicist Lev Landau and his colleagues. The fact that couplings depend on the momentum (or length) scale is the central idea behind the renormalization group. Landau poles appear in theories that are not asymptotically free, such as quantum electrodynamics (QED) or φ4 theory—a scalar field with a quartic interaction—such as may describe the Higgs boson.
Beta function (physics)In theoretical physics, specifically quantum field theory, a beta function, β(g), encodes the dependence of a coupling parameter, g, on the energy scale, μ, of a given physical process described by quantum field theory. It is defined as and, because of the underlying renormalization group, it has no explicit dependence on μ, so it only depends on μ implicitly through g. This dependence on the energy scale thus specified is known as the running of the coupling parameter, a fundamental feature of scale-dependence in quantum field theory, and its explicit computation is achievable through a variety of mathematical techniques.
Richard FeynmanRichard Phillips Feynman (1918-1988) est un physicien américain, l'un des plus influents de la seconde moitié du , en raison notamment de ses travaux sur l'électrodynamique quantique, les quarks et l'hélium superfluide. Il reformula entièrement la mécanique quantique à l'aide de son intégrale de chemin (qui généralise le principe de moindre action de la mécanique classique), et inventa les diagrammes qui portent son nom et qui sont désormais largement utilisés en théorie quantique des champs (dont l'électrodynamique quantique fait partie).
Fermionic fieldIn quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields. The most prominent example of a fermionic field is the Dirac field, which describes fermions with spin-1/2: electrons, protons, quarks, etc. The Dirac field can be described as either a 4-component spinor or as a pair of 2-component Weyl spinors.