NavireUn navire est un bateau destiné à la navigation maritime, c'est-à-dire prévu pour naviguer au-delà de la limite où cessent de s'appliquer les règlements techniques de sécurité de navigation intérieure et où commencent à s'appliquer les règlements de navigation maritime. Du point de vue du règlement international pour prévenir les abordages en mer : (règle 3-a). thumb|Deux porte-conteneurs à San Francisco. vignette|upright=1.3|Comparaison de navires les plus longs de leur catégorie (pétrolier, porte-conteneurs, vraquier, paquebot, porte-avions).
Programmation orientée prototypeLa programmation orientée prototype est une forme de programmation orientée objet sans classe, fondée sur la notion de prototype. Un prototype est un objet à partir duquel on crée de nouveaux objets. Dans le langage de programmation orientée prototype Self, les propriétés d'un objet, qu'elles renvoient à des attributs ou à des méthodes, sont appelés slots ; il n'y a pas la même distinction entre les slots de données et les slots de code qu'on a avec les classes.
Objective-CObjective-C est un langage de programmation orienté objet réflexif. C'est une extension du C ANSI, comme le C++, mais qui se distingue de ce dernier par sa distribution dynamique des messages, son typage faible ou fort, son typage dynamique et son chargement dynamique. Contrairement au C++, il ne permet pas l'héritage multiple mais il existe toutefois des moyens de combiner les avantages de C++ et d'Objective-C.
Résolution de problèmevignette|Résolution d'un problème mathématique. La résolution de problème est le processus d'identification puis de mise en œuvre d'une solution à un problème. Analyse de cause racine (ACR, Root cause analysis) : cette démarche part du constat qu'il est plus judicieux de traiter les causes d'un problème que d'en traiter les symptômes immédiats. Puisqu'analyser les causes d'un problème permet d'en déterminer une solution définitive, et donc, empêcher qu'il ne se reproduise de nouveau.
Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.
Algorithme A*En informatique, plus précisément en intelligence artificielle, l'algorithme de recherche A* (qui se prononce A étoile, ou A star en anglais) est un algorithme de recherche de chemin dans un graphe entre un nœud initial et un nœud final tous deux donnés. En raison de sa simplicité il est souvent présenté comme exemple typique d'algorithme de planification, domaine de l'intelligence artificielle.
Algorithme gloutonUn algorithme glouton (greedy algorithm en anglais, parfois appelé aussi algorithme gourmand, ou goulu) est un algorithme qui suit le principe de réaliser, étape par étape, un choix optimum local, afin d'obtenir un résultat optimum global. Par exemple, dans le problème du rendu de monnaie (donner une somme avec le moins possible de pièces), l'algorithme consistant à répéter le choix de la pièce de plus grande valeur qui ne dépasse pas la somme restante est un algorithme glouton.
Optimization problemIn mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.
Admissible heuristicIn computer science, specifically in algorithms related to pathfinding, a heuristic function is said to be admissible if it never overestimates the cost of reaching the goal, i.e. the cost it estimates to reach the goal is not higher than the lowest possible cost from the current point in the path. It is related to the concept of consistent heuristics. While all consistent heuristics are admissible, not all admissible heuristics are consistent. An admissible heuristic is used to estimate the cost of reaching the goal state in an informed search algorithm.
Géométrie algorithmiquevignette|Rendu d'un cylindre à l'aide d'un programme d'ordinateur. La géométrie algorithmique est le domaine de l'algorithmique qui traite des algorithmes manipulant des concepts géométriques. La géométrie algorithmique est l'étude des algorithmes manipulant des objets géométriques. Par exemple, le problème algorithmique qui consiste, étant donné un ensemble de points dans le plan décrits par leurs coordonnées, à trouver la paire de points dont la distance est minimale est un problème d'algorithmique géométrique.