Boson de GoldstoneLe boson de Goldstone, parfois appelé boson de Nambu-Goldstone, est un type de particule dont l’existence est impliquée par le phénomène de brisure spontanée de symétrie. D’abord prédit par Yoichiro Nambu puis théorisé par Jeffrey Goldstone, il fait aujourd’hui partie intégrante de la théorie quantique des champs. Il est de spin et masse nuls, bien qu’il puisse acquérir une masse dans certains cas en devenant ainsi un . La nécessité d'un boson de Goldstone dans le modèle standard vient du fait que les bosons de jauge étaient alors supposés ne pas avoir de masse.
Théorie des twisteursLa théorie des twisteurs, introduite par Roger Penrose dans les années 1970, ou plus précisément de « particules » se déplaçant à la vitesse de la lumière. Pour décrire un point de l'espace temps, la théorie imagine tous les rayons lumineux qui parviennent à ce point. Un paramètre doit par ailleurs être ajouté aux rayons lumineux : une hélicité. Finalement l'espace considéré et qui encode l'espace-temps, est de .
Programmation par contraintesLa programmation par contraintes (PPC, ou CP pour constraint programming en anglais) est un paradigme de programmation apparu dans les années 1970 et 1980 permettant de résoudre des problèmes combinatoires de grande taille tels que les problèmes de planification et d'ordonnancement. En programmation par contraintes, on sépare la partie modélisation à l'aide de problèmes de satisfaction de contraintes (ou CSP pour Constraint Satisfaction Problem), de la partie résolution dont la particularité réside dans l'utilisation active des contraintes du problème pour réduire la taille de l'espace des solutions à parcourir (on parle de propagation de contraintes).
Split supersymmetryIn particle physics, split supersymmetry is a proposal for physics beyond the Standard Model. It was proposed separately in three papers. The first by James Wells in June 2003 in a more modest form that mildly relaxed the assumption about naturalness in the Higgs potential. In May 2004 Nima Arkani-Hamed and Savas Dimopoulos argued that naturalness in the Higgs sector may not be an accurate guide to propose new physics beyond the Standard Model and argued that supersymmetry may be realized in a different fashion that preserved gauge coupling unification and has a dark matter candidate.
Moduli stack of elliptic curvesIn mathematics, the moduli stack of elliptic curves, denoted as or , is an algebraic stack over classifying elliptic curves. Note that it is a special case of the moduli stack of algebraic curves . In particular its points with values in some field correspond to elliptic curves over the field, and more generally morphisms from a scheme to it correspond to elliptic curves over . The construction of this space spans over a century because of the various generalizations of elliptic curves as the field has developed.
Corde (physique)En physique théorique, les cordes sont les objets principaux étudiés dans la théorie des cordes. Une corde est un objet unidimensionnel. Avec la théorie des cordes, les composantes de la matière les plus fondamentales de notre univers ne sont plus des particules, mais de minuscules cordes vibrantes d'une taille théorique de 10-35 m. Se propageant dans l'espace-temps, la surface bidimensionnelle engendrée par son déplacement, appelée feuillet d'univers ou surface d'univers, peut être comparée à la ligne d'univers engendrée par une particule ponctuelle.
Siegel modular varietyIn mathematics, a Siegel modular variety or Siegel moduli space is an algebraic variety that parametrizes certain types of abelian varieties of a fixed dimension. More precisely, Siegel modular varieties are the moduli spaces of principally polarized abelian varieties of a fixed dimension. They are named after Carl Ludwig Siegel, the 20th-century German number theorist who introduced the varieties in 1943. Siegel modular varieties are the most basic examples of Shimura varieties.
Analyse vectorielleL'analyse vectorielle est une branche des mathématiques qui étudie les champs de scalaires et de vecteurs suffisamment réguliers des espaces euclidiens, c'est-à-dire les applications différentiables d'un ouvert d'un espace euclidien à valeurs respectivement dans et dans . Du point de vue du mathématicien, l'analyse vectorielle est donc une branche de la géométrie différentielle. Cette dernière inclut l'analyse tensorielle qui apporte des outils plus puissants et une analyse plus concise entre autres des champs de vecteurs.
Corde cosmiquevignette|Cette image est une simulation générée par ordinateur qui représente l'amplitude du gradient des anisotropies induites par les cordes cosmiques dans le fond diffus cosmologique. Une corde cosmique est un objet hypothétique présent en faible quantité dans l'univers qui aurait une structure essentiellement linéique (d'où son nom). Il se serait formé lors d'une transition de phase dans l'univers primordial résultant d'une brisure spontanée de symétrie.
Champ conservatifUn champ de vecteurs est dit à circulation conservative (ou irrotationnel) si sa circulation sur toute courbe fermée est nulle (son rotationnel est alors nul, et réciproquement). Sous certaines conditions relatives au domaine de définition et à la régularité du champ, on peut dériver le potentiel de ce champ, fonction scalaire qui en permet une représentation alternative. De même, un champ de vecteurs est dit à flux conservatif si son flux sur toute surface fermée est nul (sa divergence est alors nulle, et réciproquement).