Groupe fondamentalEn mathématiques, et plus spécifiquement en topologie algébrique, le groupe fondamental, ou groupe de Poincaré, est un invariant topologique. Le groupe fondamental d'un espace topologique pointé (X, d) est, par définition, l'ensemble des classes d'homotopie de lacets (chemins fermés) de X de base d. C'est un groupe dont la loi de composition interne est induite par la concaténation (juxtaposition) des arcs. L'examen des groupes fondamentaux permet de prouver que deux espaces particuliers ne peuvent être homéomorphes (c'est-à-dire topologiquement équivalents).
Église catholiqueL'Église catholique, ou Église catholique romaine, est l'institution rassemblant l'ensemble des catholiques, c'est-à-dire tous les chrétiens en communion avec le pape et les évêques. Elle est aussi une institution et un clergé organisés de façon hiérarchique. Il s'agit de la plus grande Église chrétienne, avec plus d'un milliard de baptisés. Elle est aussi l'une des plus anciennes institutions religieuses au monde. Elle a joué un rôle fondamental à travers l'histoire, en particulier dans le monde occidental.
Évolution (biologie)En biologie, l’évolution est la transformation du monde vivant au cours du temps, qui se manifeste par des changements phénotypiques des organismes à travers les générations. Ces changements généralement graduels (mais pouvant être rapides ou lents) peuvent aboutir, à partir d’une seule espèce (dite « espèce-mère »), à la formation de nouvelles variétés périphériques devenant progressivement des « espèces-filles ». Inversement, la fusion de deux lignées par hybridation ou par symbiogenèse entre deux populations d'espèces différentes peuvent produire une troisième espèce nouvelle.
Groupe topologiqueEn mathématiques, un groupe topologique est un groupe muni d'une topologie compatible avec la structure de groupe, c'est-à-dire telle que la loi de composition interne du groupe et le passage à l'inverse sont deux applications continues. L'étude des groupes topologiques mêle donc des raisonnements d'algèbre et de topologie. La structure de groupe topologique est une notion essentielle en topologie algébrique. Les deux axiomes de la définition peuvent être remplacés par un seul : Un morphisme de groupes topologiques est un morphisme de groupes continu.
Espace vectoriel topologiqueEn mathématiques, les espaces vectoriels topologiques sont une des structures de base de l'analyse fonctionnelle. Ce sont des espaces munis d'une structure topologique associée à une structure d'espace vectoriel, avec des relations de compatibilité entre les deux structures. Les exemples les plus simples d'espaces vectoriels topologiques sont les espaces vectoriels normés, parmi lesquels figurent les espaces de Banach, en particulier les espaces de Hilbert. Un espace vectoriel topologique (« e.v.t.
Processus unimoléculaireUn processus unimoléculaire est un processus dans lequel une seule molécule réagit afin de se transformer en une autre molécule (isomérisation) ou bien en plusieurs molécules (dissociation). En cinétique chimique, une étape élémentaire unimoléculaire sera d'ordre un par rapport au seul réactif. Si une réaction unimoléculaire donnée n'est pas d'ordre un expérimentalement, il faut conclure qu'il possède plus qu'une étape élémentaire. En pratique, nombreuses réactions unimoléculaires sont d'ordre deux, ce qui s'explique par le mécanisme Lindemann-Hinshelwood de deux étapes.
Paysage adaptatifLe paysage adaptatif (ou paysage de fitness, fitness landscape en anglais) est un outil utilisé en biologie évolutive pour visualiser les relations entre des génotypes et le succès reproductif. Le paysage adaptatif est une représentation de la fitness d’organismes, d’espèces ou de populations sous forme d’une carte topographique. Cette fitness, ou valeur sélective, est une mesure relative de la survie et de la reproduction. vignette|Croquis d'un paysage de fitness.
PreuveUne preuve, (en science ou en droit) est un fait ou un raisonnement propre à établir la vérité. Une preuve est associée à son niveau d'incertitude quand elle est utilisée. Les éléments inductifs et déductifs qui y sont attachés lui confèrent donc un certain niveau d'incertitude. L'évaluation intuitive de ce niveau détermine le degré de confiance qu'on peut apporter à la preuve. La plupart des preuves utilisées dans la vie courante sont communément admises comme étant dignes de confiance.
Machine abstraiteEn informatique théorique, et notamment en théorie des automates, un automate abstrait ou une machine abstraite est un modèle théorique d'un ordinateur digital et discret. Il importe peu, dans ce cadre, de savoir si cet appareil peut effectivement être construit, mais plutôt d'appréhender, par ce modèle simplifié, le fonctionnement des machines, et de les comparer entre eux. La notion d'automate ou de machine abstraite, aussi appelé « modèle de machine » joue un rôle central en informatique théorique.
Complete topological vector spaceIn functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by or , which are generalizations of , while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces.