Génération de seconde harmoniquevignette|Niveaux d'énergie impliqués dans la création de SHG La génération de seconde harmonique (GSH ou SHG en anglais, également appelé doublage de fréquence) est un phénomène d'optique non linéaire dans lequel des photons interagissant avec un matériau non linéaire sont combinés pour former de nouveaux photons avec le double de l'énergie, donc avec le double de la fréquence ou la moitié de la longueur d'onde des photons initiaux. La génération de seconde harmonique, en tant qu'effet optique non linéaire d'ordre pair, n'est autorisée que dans les milieux sans centre d'inversion .
Optique non linéaireLorsqu'un milieu matériel est mis en présence d'un champ électrique , il est susceptible de modifier ce champ en créant une polarisation . Cette réponse du matériau à l'excitation peut dépendre du champ de différentes façons. L'optique non linéaire regroupe l'ensemble des phénomènes optiques présentant une réponse non linéaire par rapport à ce champ électrique, c'est-à-dire une réponse non proportionnelle à E.
Spectroscopie RamanLa spectroscopie Raman (ou spectrométrie Raman) et la microspectroscopie Raman sont des méthodes non destructives d'observation et de caractérisation de la composition moléculaire et de la structure externe d'un matériau, qui exploite le phénomène physique selon lequel un milieu modifie légèrement la fréquence de la lumière y circulant. Ce décalage en fréquence dit l'effet Raman correspond à un échange d'énergie entre le rayon lumineux et le milieu, et donne des informations sur le substrat lui-même.
High harmonic generationHigh harmonic generation (HHG) is a non-linear process during which a target (gas, plasma, solid or liquid sample) is illuminated by an intense laser pulse. Under such conditions, the sample will emit the high harmonics of the generation beam (above the fifth harmonic). Due to the coherent nature of the process, high harmonics generation is a prerequisite of attosecond physics. Perturbative harmonic generation is a process whereby laser light of frequency ω and photon energy ħω can be used to generate new frequencies of light.
Optical autocorrelationIn optics, various autocorrelation functions can be experimentally realized. The field autocorrelation may be used to calculate the spectrum of a source of light, while the intensity autocorrelation and the interferometric autocorrelation are commonly used to estimate the duration of ultrashort pulses produced by modelocked lasers. The laser pulse duration cannot be easily measured by optoelectronic methods, since the response time of photodiodes and oscilloscopes are at best of the order of 200 femtoseconds, yet laser pulses can be made as short as a few femtoseconds.
MicroscopieLa microscopie est un ensemble de techniques d' des objets de petites dimensions. Quelle que soit la technique employée, l'appareil utilisé pour rendre possible cette observation est appelé un . Des mots grecs anciens mikros et skopein signifiant respectivement « petit » et « examiner », la microscopie désigne étymologiquement l'observation d'objets invisibles à l'œil nu. On distingue principalement trois types de microscopies : la microscopie optique, la microscopie électronique et la microscopie à sonde locale.
Polarisation circulaireLa polarisation circulaire d'un rayonnement électromagnétique est une polarisation où la norme du vecteur du champ électrique ne change pas alors que son orientation change selon un mouvement de rotation. En électrodynamique la norme et la direction d'un champ électrique sont représentés par un vecteur comme on peut le voir dans l'animation ci-contre. Dans le cas d'une onde polarisée circulairement, les vecteurs d'un champ électrique, à un point donné dans l'espace, décrivent un cercle en fonction du temps.
Cristalvignette|Cristaux. vignette|Cristaux de sel obtenus par cristallisation lente dans une saumure à température ambiante. Un cristal est un solide dont les constituants (atomes, molécules ou ions) sont assemblés de manière régulière, par opposition au solide amorphe. Par « régulier » on veut généralement dire qu'un même motif est répété à l'identique un grand nombre de fois selon un réseau régulier, la plus petite partie du réseau permettant de recomposer l'empilement étant appelée une « maille ».
Interférométrievignette|Le trajet de la lumière à travers un interféromètre de Michelson. Les deux rayons lumineux avec une source commune se combinent au miroir semi-argenté pour atteindre le détecteur. Ils peuvent interférer de manière constructive (renforcement de l'intensité) si leurs ondes lumineuses arrivent en phase, ou interférer de manière destructive (affaiblissement de l'intensité) s'ils arrivent en déphasage, en fonction des distances exactes entre les trois miroirs.
Structure cristallineLa structure cristalline (ou structure d'un cristal) donne l'arrangement des atomes dans un cristal. Ces atomes se répètent périodiquement dans l'espace sous l'action des opérations de symétrie du groupe d'espace et forment ainsi la structure cristalline. Cette structure est un concept fondamental pour de nombreux domaines de la science et de la technologie. Elle est complètement décrite par les paramètres de maille du cristal, son réseau de Bravais, son groupe d'espace et la position des atomes dans l'unité asymétrique la maille.