Réaction de SuzukiLa réaction de Suzuki, réaction de Suzuki-Miyaura ou couplage de Suzuki-Miyaura est une réaction de couplage et utilisée en chimie organique dans laquelle un groupe aryle et un deuxième groupe aryle se condensent pour donner une seule molécule. Généralement, cette réaction utilise un acide boronique réagissant avec un dérivé halogéné, tel un brome ou un iode avec un catalyseur au palladium. Cette réaction chimique a été publiée pour la première fois en 1979 par Akira Suzuki (鈴木章) (qui a reçu le prix Nobel de chimie en 2010 pour cette découverte) et Norio Miyaura (宮浦憲夫).
Couplage de HiyamaLe couplage de Hiyama est une réaction de couplage entre un organosilane et un halogénure organique ou un triflate, catalysée par du palladium parfois assisté par du nickel. Ce couplage a été décrit pour la première fois par Yasuo Hatanaka et Tamejiro Hiyama en 1988. Dans la publication initiale de 1988, le 1-iodonaphtalène réagit avec le triméthylvinylsilane pour produire le 1-vinylnaphtalène avec une catalyse au chlorure d'allylpalladium. Cette réaction dispose de plusieurs avantages.
Éther-oxydeLes éther-oxydes, appelés aussi plus simplement éthers, sont des composés organiques de formule générale R-O-R', où R et R' sont des groupes alkyle. Ils sont souvent utilisés en chimie organique pour protéger des fonctions alcool lors de réactions de synthèse. Ils ont d'ailleurs avec ces derniers de nombreuses propriétés communes, dues à la liaison carbone-oxygène et aux doublets libres de l'oxygène (voir la section Géométrie).
Vinyl halideIn organic chemistry, a vinyl halide is a compound with the formula CH2=CHX (X = halide). The term vinyl is often used to describe any alkenyl group. For this reason, alkenyl halides with the formula RCH=CHX are sometimes called vinyl halides. From the perspective of applications, the dominant member of this class of compounds is vinyl chloride, which is produced on the scale of millions of tons per year as a precursor to polyvinyl chloride. Polyvinyl fluoride is another commercial product.
Réactif de GrignardLes réactifs de Grignard, également appelés organomagnésiens mixtes, sont une classe de composés chimiques couramment utilisés en synthèse organique, notamment en chimie fine, comme dans l'industrie pharmaceutique. Ce sont des halogénures organomagnésiens de formule générique RMgX, où R représente un résidu organique, généralement alkyle ou aryle, et X représente un halogène, en général le brome ou le chlore, parfois l'iode et exceptionnellement le fluor.
High-level synthesisHigh-level synthesis (HLS), sometimes referred to as C synthesis, electronic system-level (ESL) synthesis, algorithmic synthesis, or behavioral synthesis, is an automated design process that takes an abstract behavioral specification of a digital system and finds a register-transfer level structure that realizes the given behavior. Synthesis begins with a high-level specification of the problem, where behavior is generally decoupled from low-level circuit mechanics such as clock-level timing.
AryleDans un composé organique, un groupe aryle est un groupe fonctionnel qui dérive d'un hydrocarbure aromatique ou arène par remplacement d'un hydrogène sur le cycle aromatique . Chaque type de substituant porte un nom spécifique défini par la nomenclature IUPAC, comme phényle pour le groupe fonctionnel dérivé du benzène. Le terme aryle est un terme générique utilisé pour désigner de manière générale un substituant aromatique. Plusieurs groupes appartiennent à la famille des aryles : le groupe phényle, C6H5–, dérivé du benzène.
Synthèse logiqueEn électronique, la synthèse logique (RTL synthesis) est la traduction d'une forme abstraite de description du comportement d'un circuit (voir Register Transfer Level) en sa réalisation concrète sous forme de portes logiques. Le point de départ peut être un langage de description de matériel comme VHDL ou Verilog, un schéma logique du circuit. D'autres sources sont venues s'additionner depuis les années 2010, comme l'utilisation de la programmation en OpenCL. Le point d'arrivée peut être un code objet pour un CPLD ou FPGA ou la création d'un ASIC.
Substitution nucléophile aromatiqueA nucleophilic aromatic substitution is a substitution reaction in organic chemistry in which the nucleophile displaces a good leaving group, such as a halide, on an aromatic ring. Aromatic rings are usually nucleophilic, but some aromatic compounds do undergo nucleophilic substitution. Just as normally nucleophilic alkenes can be made to undergo conjugate substitution if they carry electron-withdrawing substituents, so normally nucleophilic aromatic rings also become electrophilic if they have the right substituents.
Système du complémentLe système du complément est un groupe d'environ 50 protéines connues du sérum, faisant partie de l'immunité innée. Douze (12) de ces protéines sont directement impliquées dans les mécanismes d'élimination des pathogènes, les autres régulent finement l'activité des premières afin d'éviter une réaction auto-immune (réaction contre le soi). Il y a trois voies biochimiques qui activent le système du complément : la voie classique du complément, la voie alterne du complément et la voie des lectines liant les résidus mannose des membranes bactériennes.