Boundary conditions in fluid dynamicsBoundary conditions in fluid dynamics are the set of constraints to boundary value problems in computational fluid dynamics. These boundary conditions include inlet boundary conditions, outlet boundary conditions, wall boundary conditions, constant pressure boundary conditions, axisymmetric boundary conditions, symmetric boundary conditions, and periodic or cyclic boundary conditions. Transient problems require one more thing i.e., initial conditions where initial values of flow variables are specified at nodes in the flow domain.
Logarithme complexeEn mathématiques, le logarithme complexe est une fonction généralisant la fonction logarithme naturel (définie sur ]0,+∞[) au domaine C* des nombres complexes non nuls. Plusieurs définitions sont possibles. Aucune ne permet de conserver, à la fois, l'univocité, la continuité et les propriétés algébriques de la fonction logarithme. Histoire des nombres complexes La question de savoir s'il est possible de prolonger le logarithme naturel (c'est-à-dire de le définir sur un ensemble plus grand que ]0,+∞[) s'est posée dès la seconde moitié du avec les développements en série des fonctions.
Logarithme binaireEn mathématiques, le logarithme binaire (log2 n) est le logarithme de base 2. C’est la fonction réciproque de la fonction puissance de deux : x ↦ 2x. Le logarithme binaire de x est la puissance à laquelle le nombre 2 doit être élevé pour obtenir la valeur x, soit : . Ainsi, le logarithme binaire de 1 est 0, le logarithme binaire de 2 est 1, le logarithme binaire de 4 est 2, le logarithme binaire de 8 est 3. On le ld () (pour logarithmus dualis), mais la norme ISO 80000-2 indique que log2(x) devrait être symbolisé par lb (x).
Moyenne logarithmiquevignette|300x300px|Graphique tridimensionnel représentant la moyenne logarithmique de x et y. En mathématiques, la moyenne logarithmique est un type de moyenne. Pour deux réels strictement positifs, elle est égale à leur différence, divisée par le logarithme de leur quotient. Cette moyenne est utilisée lors de problèmes d'ingénierie concernant le transfert de chaleur et de masse. La moyenne logarithmique de deux réels strictement positifs est définie par : Ainsi, par exemple, la moyenne logarithmique de 1 et 2 est , voir la .
Classical electromagnetism and special relativityThe theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electric or magnetic laws.
Singularité nueEn relativité générale, une singularité nue () est une singularité gravitationnelle qui ne serait pas cachée derrière un horizon des événements. Le concept s'oppose à celui d'une singularité située à l'intérieur d'un trou noir, qui est cachée par l'horizon à partir duquel la force gravitationnelle courbe suffisamment l'espace-temps pour que même la lumière ne puisse s'en échapper. Par conséquent, les objets situés à l'intérieur de l’horizon des événements, y compris la singularité elle-même, ne peuvent être observés directement.
Level (logarithmic quantity)In science and engineering, a power level and a field level (also called a root-power level) are logarithmic magnitudes of certain quantities referenced to a standard reference value of the same type. A power level is a logarithmic quantity used to measure power, power density or sometimes energy, with commonly used unit decibel (dB). A field level (or root-power level) is a logarithmic quantity used to measure quantities of which the square is typically proportional to power (for instance, the square of voltage is proportional to power by the inverse of the conductor's resistance), etc.
Solution in radicalsA solution in radicals or algebraic solution is a closed-form expression, and more specifically a closed-form algebraic expression, that is the solution of a polynomial equation, and relies only on addition, subtraction, multiplication, division, raising to integer powers, and the extraction of nth roots (square roots, cube roots, and other integer roots). A well-known example is the solution of the quadratic equation There exist more complicated algebraic solutions for cubic equations and quartic equations.