Publication

Faster Integer Multiplication

2009
Article de conférence
Résumé

For more than 35 years, the fastest known method for integer multiplication has been the Schonhage-Strassen algorithm running in time O(n log n log log n). Under certain restrictive conditions, there is a corresponding Omega(n log n) lower bound. All this time, the prevailing conjecture has been that the complexity of an optimal integer multiplication algorithm is Theta(n log n). We take a major step towards closing the gap between the upper bound and the conjectured lower bound by presenting an algorithm running in time n log n2(O)(log* n). The running time bound holds for multitape Turing machines. The same bound is valid for the size of Boolean circuits.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.