Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Algorithme de colonies de fourmisLes algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Ligne de montagevignette|Assemblage d'Airbus A321 dans l'usine d'Airbus sur l’aéroport de Hambourg-Finkenwerder. Une ligne de montage ou chaîne de montage est un ensemble de postes de travail spécialisés disposés dans un ordre préétabli correspondant à la succession des opérations d'assemblage des composants d'un produit. Une ligne de montage se caractérise généralement par l'emploi d'un convoyeur mécanisé qui transporte le produit en cours de montage d'un poste à un autre.
Suite (mathématiques)vignette|Exemple de suite : les points bleus représentent ses termes. En mathématiques, une suite est une famille d'éléments — appelés ses « termes » — indexée par les entiers naturels. Une suite finie est une famille indexée par les entiers strictement positifs inférieurs ou égaux à un certain entier, ce dernier étant appelé « longueur » de la suite. Lorsque tous les éléments d'une suite (infinie) appartiennent à un même ensemble , cette suite peut être assimilée à une application de dans .
Algorithme évolutionnistevignette|redresse=1.2|Un algorithme évolutionnaire utilise itérativement des opérateurs de sélections (en bleu) et de variation (en jaune). i : initialisation, f(X) : évaluation, ? : critère d'arrêt, Se : sélection, Cr : croisement, Mu : mutation, Re : remplacement, X* : optimum. Les algorithmes évolutionnistes ou algorithmes évolutionnaires (evolutionary algorithms en anglais), sont une famille d'algorithmes dont le principe s'inspire de la théorie de l'évolution pour résoudre des problèmes divers.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Chaîne de productionvignette|Le premier Boeing 787 immatriculé en Australie en assemblage final à Seattle. La chaîne de production est l'ensemble des opérations de fabrication nécessaires à la réalisation d'un produit manufacturé, des matières premières jusqu'à la mise sur le marché. Typiquement, les matières premières telles que les minerais de métaux, les produits agricoles, tels que les produits alimentaires ou les plantes à l'origine des textiles (coton, lin), nécessitent un traitement préliminaire pour les rendre utilisables.
MétaheuristiqueUne métaheuristique est un algorithme d’optimisation visant à résoudre des problèmes d’optimisation difficile (souvent issus des domaines de la recherche opérationnelle, de l'ingénierie ou de l'intelligence artificielle) pour lesquels on ne connaît pas de méthode classique plus efficace. Les métaheuristiques sont généralement des algorithmes stochastiques itératifs, qui progressent vers un optimum global (c'est-à-dire l'extremum global d'une fonction), par échantillonnage d’une fonction objectif.
Algorithme mémétiqueLes algorithmes mémétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode de résolution pour résoudre le problème de manière exacte en un temps raisonnable. Les algorithmes mémétiques sont nés d'une hybridation entre les algorithmes génétiques et les algorithmes de recherche locale. Ils utilisent le même processus de résolution que les algorithmes génétiques mais utilisent un opérateur de recherche locale après celui de mutation.
Intelligence distribuéeL'intelligence distribuée, appelée aussi intelligence en essaim, désigne l'apparition de phénomènes cohérents à l'échelle d'une population dont les individus agissent selon des règles simples. L'interaction ou la synergie entre actions individuelles simples peut de façons variées permettre l'émergence de formes, organisations, ou comportements collectifs, complexes ou cohérents, tandis que les individus eux se comportent à leur échelle indépendamment de toute règle globale.