Nonlinear controlNonlinear control theory is the area of control theory which deals with systems that are nonlinear, time-variant, or both. Control theory is an interdisciplinary branch of engineering and mathematics that is concerned with the behavior of dynamical systems with inputs, and how to modify the output by changes in the input using feedback, feedforward, or signal filtering. The system to be controlled is called the "plant".
Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
LoxodromieUne loxodromie (du grec lox(o)- et -dromie course (δρόμος) oblique (λοξός), en anglais rhumb line), est une courbe qui coupe les méridiens d'une sphère sous un angle constant. C'est la trajectoire suivie par un navire qui suit un cap constant. Une route loxodromique est représentée sur une carte marine ou aéronautique en projection de Mercator par une ligne droite, mais elle ne représente pas la distance la plus courte entre deux points. En effet, la route la plus courte, appelée route orthodromique ou orthodromie, est un arc de grand cercle de la sphère.
Arc de méridienEn géodésie, la mesure d'un arc de méridien est la détermination la plus exacte possible de la distance entre deux points situés sur un même méridien, soit à la même longitude. Deux ou plusieurs déterminations de ce type dans des endroits différents précisent ensuite la forme de l'ellipsoïde de référence qui donne la meilleure approximation de la forme du géoïde. Ce processus est appelé « déterminer la figure de la Terre ». Les premières mesures de la taille d'une Terre sphérique eurent besoin d'un seul arc.
Projection azimutale équivalente de LambertLa projection azimutale équivalente de Lambert est une manière de projeter une sphère sur un plan, et en particulier, une façon de représenter entièrement la surface de la Terre sous la forme d'un disque. C'est donc une projection cartographique azimutale conçue (parmi d'autres) en 1772 par le mathématicien alsacien Johann Heinrich Lambert. Cette projection de Lambert "projette directement" sur un plan (projection azimutale) et conserve localement les surfaces (projection équivalente) ; mais ne conserve pas les angles (projection non conforme).
Rayon de la Terrevignette|upright=0.7|Rayon de la Terre (en jaune) en fonction de la latitude (φ) comparé à la distance perpendiculaire entre l'axe de rotation de la Terre et la surface (en bleu). Le rayon de la Terre ( ou ) est la distance entre le centre de la Terre et sa surface, d'une valeur d'environ selon divers modèles sphériques. Cette unité de longueur est utilisée dans des domaines tels l'astronomie et la géologie. La Terre n'est pas parfaitement sphérique et les distances entre sa surface et son centre varient de (fond de l'océan Arctique) à (sommet du Chimborazo).
Semi-major and semi-minor axesIn geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section.
Equatorial bulgeAn equatorial bulge is a difference between the equatorial and polar diameters of a planet, due to the centrifugal force exerted by the rotation about the body's axis. A rotating body tends to form an oblate spheroid rather than a sphere. Earth ellipsoid The planet Earth has a rather slight equatorial bulge; its equatorial diameter is about greater than its polar diameter, with a difference of about of the equatorial diameter. If Earth were scaled down to a globe with an equatorial diameter of , that difference would be only .