Wavelet transformIn mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform. A function is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space of square integrable functions.
Discrete wavelet transformIn numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
Ondelettethumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.
Continuous wavelet transformIn mathematics, the continuous wavelet transform (CWT) is a formal (i.e., non-numerical) tool that provides an overcomplete representation of a signal by letting the translation and scale parameter of the wavelets vary continuously. The continuous wavelet transform of a function at a scale (a>0) and translational value is expressed by the following integral where is a continuous function in both the time domain and the frequency domain called the mother wavelet and the overline represents operation of complex conjugate.
Ondelette de HaarL'ondelette de Haar, ou fonction de Rademacher, est une ondelette créée par Alfréd Haar en 1909. On considère que c'est la première ondelette connue. Il s'agit d'une fonction constante par morceaux, ce qui en fait l'ondelette la plus simple à comprendre et à implémenter. L'ondelette de Haar peut être généralisée par ce qu'on appelle le système de Haar. La fonction-mère des ondelettes de Haar est une fonction constante par morceaux : La fonction d'échelle associée est alors une fonction porte : Le système de Haar est une suite de fonctions continues par morceaux, appartenant à pour .
Morlet waveletIn mathematics, the Morlet wavelet (or Gabor wavelet) is a wavelet composed of a complex exponential (carrier) multiplied by a Gaussian window (envelope). This wavelet is closely related to human perception, both hearing and vision. Wavelet#History In 1946, physicist Dennis Gabor, applying ideas from quantum physics, introduced the use of Gaussian-windowed sinusoids for time-frequency decomposition, which he referred to as atoms, and which provide the best trade-off between spatial and frequency resolution.
MétalEn chimie, les métaux sont des matériaux dont les atomes sont unis par des liaisons métalliques. Il s'agit de corps simples ou d'alliages le plus souvent durs, opaques, brillants, bons conducteurs de la chaleur et de l'électricité. Ils sont généralement malléables, c'est-à-dire qu'ils peuvent être martelés ou pressés pour leur faire changer de forme sans les fissurer, ni les briser. De nombreuses substances qui ne sont pas classées comme métalliques à pression atmosphérique peuvent acquérir des propriétés métalliques lorsqu'elles sont soumises à des pressions élevées.
Composé intermétalliqueUn composé intermétallique, ou semi-métallique, est l'association de métaux ou de métalloïdes par une liaison chimique. Le composé est formé à une composition précise (composé stœchiométrique) ou dans un domaine de composition (composé non stœchiométrique) défini et distinct des domaines de solutions solides composés d'éléments purs. Il se forme également sous certaines conditions de pression et de température. La structure des intermétalliques est généralement ordonnée, en principe chaque élément occupe des sites particuliers ou possède au moins une préférence pour des sites particuliers.
Acier au creusetL'acier au creuset désigne le métal issu d'un certain nombre de procédés historiques d'élaboration d'acier dans un creuset. Ces procédés consistent essentiellement à affiner ou refondre du fer ou de l'acier préalablement élaborés dans un four distinct. L'acier au creuset est souvent un acier de qualité supérieure, dont l'importance technique et culturelle est essentielle (wootz pour la fabrication d'armes, aciers d'Huntsman pour les ressorts d'horlogerie, etc).
InterférenceEn mécanique ondulatoire, les interférences sont la combinaison de deux ondes susceptibles d'interagir. Ce phénomène apparaît souvent en optique avec les ondes lumineuses, mais il s'obtient également avec des ondes électromagnétiques d'autres longueurs d'onde, ou avec d'autres types d'ondes comme des ondes sonores. À savoir aussi, le phénomène d'interférence se produit uniquement lors de la combinaison de deux ondes de même fréquence. L' onde se modélise par une fonction , étant la position dans l'espace et t étant le temps.